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Abstract—Recently, the project AcListant® related to automatic 

speech recognition has achieved command recognition error 

rates below 1.7% based on Assistant Based Speech Recognition 

(ABSR). One main issue to transfer ABSR from the laboratory to 

the ops-rooms is its costs of deployment. Currently each ABSR 

model must manually be adapted to the local environment due to 

e.g. different accents and models to predict possible controller

commands. The Horizon 2020 funded project MALORCA (Ma-

chine Learning of Speech Recognition Models for Controller As-

sistance) proposes a general, cheap and effective solution to au-

tomate this re-learning, adaptation and customization process to

new environments, by taking advantage of the large amount of

speech data available in the ATM world. This paper presents an

algorithm which automatically learns a model to predict control-

ler commands from recorded untranscribed controller utterances

and the corresponding radar data. The trained model is validated

against transcribed controller commands for Vienna and Prague

approach. Command error rates are reduced from 4.1% to 0.9%

for Prague approach and from 10.9% to 2.0% for Vienna.

Keywords-Machine Learning, Assistant Based Speech 

Recognition, Unsupervised Learning, Command Prediction Model 

I. INTRODUCTION

A. Problem

One of the main causes hampering the introduction of high-

er levels of automation in the Air Traffic Management (ATM) 

world is the cost factor. ATM system suppliers try to reduce 

costs by developing generic systems, e.g. one basic Arrival 

Manager like MAESTRO [1] which fits for many airports. 

Therefore, the deployment of decision and negotiation support 

tools in current ATM business still requires a strong and manu-

al adaptation to the local environment to avoid low end-user 

(controller) acceptance. Every single process of adaptation 

yields a significant cost increase for a core ATM system so that 

total system costs easily exceed the threshold of one million 

Euros.  

To ensure the acceptance of any new feature developed by 

any ATM project, it is imperative that its benefits are clearly 

recognizable for the end-user at the very beginning when they 

are confronted with new tools. If the outcomes of the develop-

ment are not of certain quality, new problems or additional 

workload are introduced to the end-user and they will likely 

refuse the acceptance and cooperation, i.e. when a new tool is 

demonstrated to end-users it should already be tailored to the 

local environment. On the other hand if we provide end-users 

with innovative and helpful tools with a promising perspective 

that further improvements can be achieved, strong support 

from the end-users can be expected for the further develop-

ment.  

In aviation, Automatic Speech Recognition (ASR) is a 

known technology used with considerable success in ATC 

training simulators. Recently, the venture capital funded project 

AcListant® [2] has achieved command error rates below 2% in 

operational environments and fuel reduction of 60 liters per 

aircraft (based on an A320) with a specific speech recognition 

technology called Assistant Based Speech Recognition 

(ABSR), developed by Saarland University (USAAR) and 

DLR [3]-[6]. ABSR combines ASR with an assistant system, 

which generates context information to reduce the search space 

of the speech recognizer.  

To manually adapt the ABSR models to different local en-

vironments, large amounts of speech data need to be collected 

and manually transcribed, especially, if the mismatch between 

the original models and the new environment is large. It re-

quires significant human effort and the process of re-training 

requires vast expertise. The new data is generally used to adapt 

the acoustic model, the language model, and the rules to gener-

ate the context for the local environment. Moreover, partial ad-

aptation may be required also during the life time of the system 

given that involved controllers, waypoints, procedures or used 

phraseology, etc. may change, resulting in new costs. Today 

the adaptation process requires a notable amount of resources 

and hence causes considerable costs. The estimate is that these 

adaptations costs represent at least 10% of the total costs [7]. 

Both end-user partners, i.e. Austro Control and ANS CR, are 

the first test sites who will explore proposed solutions. To con-

clude: Less expensive adaptation to the local needs without 

compromises with respect to end-user acceptance is needed. 

The work is partly funded by SESAR Joint Undertaking (Grant Number 
698824). 
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B. Solution 

The Horizon 2020 SESAR project MALORCA (Machine 

Learning of Speech Recognition Models for Controller Assis-

tance) proposes a general, cheap and effective solution to au-

tomate this adaptation and customisation process. Adaptation 

of speech recognition models were selected as a first show-case 

of MALORCA [8]. The MALORCA consortium consists of 

two members from academia, Saarland University (Germany) 

and Idiap Research Institute (Switzerland), Air Navigation Ser-

vice Providers from Czech Republic (ANS CR) and Austria 

(Austro Control) representing the user needs, and the German 

Aerospace Center (DLR) as the connecting element between 

fundamental research and business needs. The proposed solu-

tion builds on the huge amount of target data recorded every 

day in the operation rooms. 

 

Figure 1 Principal idea of MALORCA project to learn from historic data 

As shown in Figure 1, each Air Navigation Service Provid-

er (ANSP) generates Mega Bytes or even Giga Bytes of radar 

data and voice recordings on a daily basis. These recordings 

can be the input for machine learning algorithms. The outputs 

would be improved speech recognition models which are 

adapted to the local needs. These initial models can be im-

proved day by day. If a new waypoint is added it would be 

learned, if a waypoint is removed it would be “unlearned” etc.  

C. Paper Structure 

In the next chapter we present related work with respect to 

machine learning and speech recognition applications in ATM. 

In chapter III the Command Prediction Model which is the fo-

cus of this paper is shown in detail. The performed proof-of-

concept experiments are described in chapter IV. The results 

can be found in chapter V. Afterwards results and next steps 

are discussed in chapter VI before we draw our conclusions in 

chapter VII. First results on learning the acoustic and language 

models can be found in [9] and [10]. 

II. RELATED WORK 

A. Speech Recognition Applications in ATM 

Speech Recognition applications have dramatically im-

proved during the last decade (e.g. Siri®, Alexa, Google Assis-

tant). The integration of ASR in ATC training started already 

in the late 80s [11]. Today ASR applications go beyond simu-

lation and training. ASR is e.g. used to get more objective 

feedback of controllers’ workload [12]. Chen and Kopald used 

speech recognition to build a safety net for airport surface traf-

fic to avoid aircraft using a closed runway [13]. Most recently 

they presented an approach to detect pilot read back errors [14].  

Although the vocabulary in controller pilot communication 

is quite limited and phraseology is restricted, recognition rates 

are still far from being perfect. One promising approach to im-

prove ASR performance is using context knowledge regarding 

expected utterances. These attempts go back to the 80s [15], 

[16]. This information may heavily reduce the search space and 

lead to fewer misrecognitions [17]. The approach developed by 

DLR and Saarland University uses the output of an Arrival 

Manager (AMAN) as context information [3]. The AMAN 

(4D-CARMA) in Figure 2 analyzes the current situation of the 

airspace and predicts possible future states used by the “Hy-

potheses Generator” to predict a set of possible commands. 

This dramatically reduces the search of the “Lattice Generator” 

[18], [19]. The search lattice is dynamically regenerated and 

contains a search tree for all possible phoneme sequences de-

termined by the “Hypotheses Generator”. The “Speech Recog-

nizer” finds the most probable path in the search tree. The out-

put of the “Command Extractor” is checked again by the 

“Plausibility Checker”, determining whether the recognized 

commands are reasonable in the current situation. 

 

Figure 2 Components of ABSR; in green components of AMAN 4D-

CARMA; in yellow components of core speech recognizer (taken from [4]) 

In [5] command recognition rates (RecR) for ABSR of 
95.2% and command recognition error rates(ErrR) below 2% 
are reported for Dusseldorf Approach Area. 

B. Supervised and unsupervised learning 

Recent advances in machine learning have significantly 

improved human-machine interaction systems by understand-

ing the context of interaction and adapting to it. Given features 

describing data and possibly output labels, machine learning 

aims to model the rules that can map the input features to out-

put labels. Output labels can be categorical, in which the task is 

called classification, or could be continuous valued in a regres-

sion task.  
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Machine learning methods can be supervised, unsupervised 

or semi-supervised [20], [21]. In supervised learning, we re-

quire data samples and corresponding output labels, and sever-

al different algorithms can be used to learn the input output re-

lationship. However, in unsupervised learning, the output la-

bels are missing and the machine learning algorithm just uses 

the data examples to learn both output labels and the rules to 

model data. Typical unsupervised learning approaches include 

data clustering to partition data according an optimization crite-

rion. In semi-supervised learning, partially labeled set of ex-

amples are used to build a machine learning model. 

Supervised learning approaches utilize different methods to 

model the input data to output labels. Decision trees [22], [23] 

use a series of nested rules to compare input data to arrive at 

the output label. The rules of the tree are pre-determined from 

expert knowledge or learned from input examples to obtain an 

optimal partitioning of data using those rules. Decision trees 

can effectively learn complex input-output relationships with 

limited data and computational resources. Recently, neural 

network based models have been shown to accurately learn ar-

bitrary input output relationships. Neural network models re-

quire extensive computational resources and are mainly effec-

tive when large amount of examples are available, e.g. to build 

acoustic models for the ABSR system [24]. 

III. MACHINE LEARNING OF COMMAND PREDICTION 

MODELS 

Assistant Based Speech Recognition (ABSR) normally uses 

three main models, which need to be trained / adapted for each 

ATC environment (approach area) separately:  

1) Acoustic Model,  

2) Language Model (e.g. grammar) and  

3) the Command Prediction Model (CPM).  

 

A. Model Interaction within ABSR 

Figure 3 shows in the upper part how those three models 

are used within ABSR. The dark blue ellipses represent the 

models; rectangles describe tasks and ellipses with a lighter 

blue show additional inputs and outputs.  

At first the CPM is used by the Hypotheses Generator in 

Figure 3 to derive a set of commands (Command Hypotheses), 

which are possible in the current situation. These commands 

are used as input for ASR to reduce the search space size and to 

guide the search process of the speech recognition system.  

The other two models (acoustic and language) are directly 

used by ASR. For a controller utterance given as audio signal, 

the acoustic model and the language model are used to extract 

the sequence of spoken words, e.g. “austrian two zero one de-

scend five thousand feet qnh one zero two two”. A sequence 

labeling approach is additionally needed to extract the relevant 

concepts from the recognized word sequence. In this case, one 

concept is the callsign “AUA201”. The next is the 

“DESCEND” command with the value “5’000 feet” and we 

have the concept “QNH” with the value “1022”. These con-

cepts are combined to two recognized commands, here 

“AUA201 DESCEND 5000 ft” and “AUA201 QNH 1022”. A 

common ontology for command transcription is being devel-

oped by SESAR 2020 exercise PJ 16-04 [25]. 

Language 
Model

Automatic Speech 
Recognition (ASR)

Command Hypotheses

Audio 
Signal

Recognized Commands

Hypotheses Generator
Command 

Prediction Model

Checker (to 

filter false 

rejections)

Filtered Recog-
nized Commands

Area 
Learning

Radar Data

Acoustic 
Model

 

Figure 3 Interaction of Acoustic, Language and Command Prediction Model 

From the three models described above, the focus of this 

paper is on the CPM and how it influences the results of the 

ABSR.  

B. Command Prediction Model as a Decision Tree 

Figure 4 shows the structure of the CPM, which is mod-

elled by a decision tree.  

Type==
Departure

Type==
Arrival

Type==
Overflight

Type==
Unknown

no

No 
Output

Use Learned 
Arrival Areas

Use ARR, 
DEP, OVF 

rules

yesno yes

Lat/Long/
Altitude in 
DEP-Area?

Lat/Long/
Altitude in 
ARR-Area?

Lat/Long/
Altitude in 
OVF-Area?

no yes

 

Figure 4 Decision Tree of Hypotheses Prediction Model 

For each command type (e.g. DESCEND, REDUCE, 

INCREASE, CLEARED_ILS) and flight type (e.g. Arrival, 

Departure, Overflight) a prediction area is needed as shown in 

Figure 5. If the “Hypotheses Generator” detects that a lat/long 

position of an aircraft is inside an area of a specific command 

type, the command values related to that flight and command 

type are predicted for that aircraft.  
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Each symbol in the prediction area (see Figure 5) represents 

a square of 1 nm by 1 nm. These areas can be created manually 

[26] or learned automatically from transcribed controller utter-

ances and corresponding recorded radar data. This, however, 

requires either expert knowledge for manual creation and/or 

expensive manual transcription work of recorded utterances. In 

order to remove the need of manual work, our approach tries to 

learn these areas from automatic transcriptions (task “Area 

Learning” in Figure 3). For each controller utterance the corre-

sponding lat/long positions are known from the recorded radar 

data, but the (correct) controller commands, however, are un-

known. The only things we know are the recognized com-

mands from the Automatic Speech Recognition in Figure 3.  

 

Figure 5 Prediction area of CPM for Cleared ILS-Command for Arrivals  

C. Filtering of Recognized Commands by Checker 

If we have a controller utterance like, “sky_travel two five 

zero nine descend to flight level nine zero”, ABSR should 

normally recognize the expected command “TVS2509 

DESCEND 90 FL”. Afterwards this command could be used, 

together with the corresponding radar data (which amongst 

others includes flight plan information) for automatic learning 

of the command prediction model, but the automatic speech 

recognition could be wrong. That means that the same control-

ler utterance could result in other commands than the expected 

one, e.g. in “TVS2509 REDUCE 190” or in “DLH109 

DESCEND 90 FL”. Without further filtering this would either 

result in an entry of 190 in the area of the REDUCE command 

or in an entry in the DESCEND area for the correct flight level 

value, but with the wrong lat/long position, given that DLH109 

also has radar data at the same time. To prevent these cases the 

“Checker” in Figure 3 tries to filter out false recognitions. The 

challenge for this task is to filter out false recognitions on the 

one hand, but not to exclude unexpected, but correct transcrip-

tions, on the other hand. To filter out false recognitions, the 

“Checker” applies the following rules for rejection: 

 Commands with unlikely values (e.g. runway that is not 

available at the airport, values for reduce or descend com-

mand to low/high etc.) 

 Commands in one transmission that are contrary and usu-

ally do not appear together (e.g. turn left and turn right for 

one aircraft) 

 If one of the recognized commands in a transmission is 

wrong (as described by the rules above) the other com-

mands could be wrong too and will be rejected as well. 

D. Command Prediction Model Learning 

All command recognitions that are not filtered by the 

“Checker” are included in the Area Learning task in Figure 3. 

This task does not only mark the areas in which a command 

type is given, but it also stores the values that occurred for a 

command type and counts how often a  specific command was 

given in the 1nm by 1nm areas of the CPM (see Figure 5).  

If we take a closer look at Figure 5 we can easily see that 

Cleared ILS commands only occur inside a small area. Two 

problems become obvious. The model consists only of a lim-

ited amount of training data which also contains false recogni-

tions. On the one hand this results in outliers which are proba-

bly the result of false recognitions that the “Checker” did not 

catch. On the other hand there are small gaps between the 

learned areas where no Cleared ILS command occurred in the 

training data, but is very likely in reality. To close the gaps and 

also expand the border of the learned areas we assumed that a 

valid command that appears at a certain position in the training 

data is not only valid for this position but also for the surround-

ing positions. We do not only mark the respective 1*1 nm area 

in which a command occurs, but also the surrounding areas. An 

expansion window size of 13 means that we also mark the 168 

neighbors (13*13-1) of a lat/long position. In order to reduce 

the influence of outliers while enlarging the CPM through ex-

pansion windows, we added an additional filter starting at a 

window size of 13x13 nm. The filter removes every 1nm by 

1nm area from the CPM that is even after expansion by the 

window only marked once. The result of this approach for the 

Cleared ILS area of Figure 5 is shown in Figure 6. 

 

Figure 6 Prediction area of CPM for Cleared ILS-Command for Arrivals 
(expansion window 13x13 nm)  

E. Iterative Improment of the Recognition Models 

As shown in the bottom yellow shaded part of Figure 3 au-

tomatic learning of the predictions areas will result in an im-
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proved “Command Prediction Model”, which we expect will 

improve the “Command Hypotheses” iteratively resulting in 

better “Recognized commands”. The aim of the MALORCA 

project, however, is to learn/improve also the other ABSR 

models. The “Checker” in Figure 3 helps also to improve 

“Acoustic Model” and “Language Model”, because the learn-

ing algorithms for acoustic and language model use the feed-

back from the additional sensor “Radar data” to decide whether 

an automatic transcription is good or improvable. In this paper 

we concentrate on CPM improvement without using inputs 

from an Arrival Manager as described in Figure 2.  

IV. EXPERIMENTAL SET-UP FOR PROOF-OF-CONCEPT 

The set-up to demonstrate that automatic learning of the 

CPM is possible and how CPM quality improves with the 

amount of provided learning data is described now. Radar data 

for Vienna approach was recorded from July to September 

2016 for runway configuration 34 for inbounds and runway 

configuration 29 and 34 for outbounds. Prague approach data 

was recorded from August to November 2016 for runway con-

figuration 24 and 30 for inbounds and runway configuration 24 

for outbounds. Recordings consist of controller communication 

to pilots and the corresponding radar data and flight plan in-

formation. 

We considered four controller positions and learned CPMs 

for each of them:  

1) Prague Arrival Executive Controller (AEC), 

2) Prague Director Executive Controller (Feeder, PEC), 

3) Vienna sector BALAD executive controller (BALAD), 

4) Vienna feeder executive controller (Feeder).  

 

The data was split into two parts. The first part was manual-

ly transcribed and used for testing. The majority was automati-

cally transcribed based on the speech recognizer software being 

developed until May 2017 in the MALORCA project. Current-

ly our training data set for Vienna consists of 18.7 hours of 

clean speech after removing the silence. For Prague approach 

18.1 hours are available. 

TABLE 1: COMMAND NUMBER RESULTING FROM AUTOMATIC TRANSCRIPTION 

Configuration # Total 

Cmds 

# Descend 

cmds 

# ILS 

clearances 

AEC 11’103 2’184 351 

PEC 5’365 920 458 

BALAD 5’929 1’062 13 

Feeder 6’959 1’100 245 

 

Table 1 shows the total number of commands resulting 

from automatic transcription by the acoustic and language 

model from May 2017 resulting in RecR of 89.0% (Prague) 

and 60.7% (Vienna) without error filtering by the “Checker” in 

Figure 2. The ErrR is 4.1% (Prague) resp. 10.9% (Vienna). 

RecR and ErrR will be iteratively improved also by CPM im-

provement within following MALORCA work packages. Tran-

scribed commands for which automatic transcriptions fails to 

recognize callsign (output NO_CALLSIGN) or command type 

(output NO_CONCEPT) are already excluded from Table 1. 

Correctly transcribed data sets were used to generate the four 

different command predictions models. We excluded from area 

learning all suspicious recognitions as described in section 

III.C. 

TABLE 2: SIZE OF TEST DATA SET 

Approach 

Area 

# Utterances #  given 

commands 

# recogn. 

commands 

# sessions 

Prague 2’582 4’563 4’580 27 

Vienna 2’427 3’556 3’556 19 

 

For evaluation we used different test utterances which were 

manually transcribed (see Table 2), i.e. for these utterances the 

correct transcription (so called gold commands) were known. 

For each of the 27 resp. 19 controller sessions we calculated 

different metrics: 

 Total number of given commands (#TgC), 

 Command recognition rate (RecR): number of correctly 

recognized commands divided by #TgC, 

 Command rejection rate (RejR): number of rejected rec-

ognized commands divided by #TgC, 

 Command recognition error rate (ErrR): number of rec-

ognized commands which were not spoken and not reject-

ed, divided by #TgC, 

 Beta: number of rejected recognized commands which 

were included in gold commands, i.e. they were wrongly 

rejected, divided by number of total rejections, 

 Command prediction error rate (CpER): number of com-

mands included in gold commands, which were not pre-

dicted, divided by #TgC, 

 Average number of predicted commands (#NPC), 

We reject a recognized command if it is not predicted by 

the learned command prediction model. The sum of the values 

RecR, RejR and ErrR could be greater than 100% (see [4] for 

detailed definition of the rates), because sometimes more 

commands are recognized than given. This at least results in an 

increase of RejE or ErrR. If more commands are given than 

recognized, this is always counted as a contribution to RejR. 

V. RESULTS 

In this chapter we present the results of our experiments 

and compare them to the baseline. As baseline we choose the 

set of predicted commands when all inputs from automatic data 

transcription are ignored, i.e. the set of predicted commands 

includes all possible commands.  

Table 3 shows the baseline results. It might be confusing 

that command prediction error rate (CpER) is not 0%, if all 

possible commands are predicted. We, however, use some 

basic heuristics already in this case to reduce number of pre-
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dicted commands. The same heuristics are applied when the 

area based “Command Prediction Model” is used (Figure 5 and 

Figure 6): 

 Altitude commands are only generated in steps of 1000 

respectively 10 for flight levels. 

 Inbounds get no climb and increase commands, outbounds 

no descend and reduce commands. Sometimes provided 

flight plan information is wrong so that this heuristic fails. 

 Aircraft do not get commands after a (recognized) hando-

ver command. 

 Predicted QNH and ATIS INFORMATION command 

values (e.g. 1013 or charly) depend on values used in pre-

vious commands. 

 Only IFR flights which are in a defined polygon around 

the airport are considered (Vienna test radar data on aver-

age contains 70 aircraft whereas on average only for 29 

aircraft commands are predicted.) 

If these hypotheses are not valid a command prediction er-

ror is observed. These errors and others are observed as well 

when area based CPM is used (Figure 5). The only exception is 

that altitude values which are no multiple of 1000 (e.g. 2700 or 

3400 feet) are learned from automatic transcription. To con-

clude: Area based command prediction will at least include 

3.7% (Vienna) resp. 1.1% (Prague) CpER. 

TABLE 3: METRICS IF ALL COMMANDS ARE PREDICTED (BASELINE) 

 #Tg

C 

Rec

R 

[%] 

Err

R 

[%] 

Rej

R 

[%] 

Beta 

[%] 

CpE

R 

[%] 

#NPC 

Vienna 3556 60.4 3.7 36.1 0.8 3.6 11505 

Prague 4566 88.1 1.1 11.0 10.0 1.0 2054 

 

In a first approach for automatic learning of the CPM we 

just used the automatically recognized commands (filtered 

commands are excluded) and stored the areas in which those 

commands occurred, according to the aircraft radar data (see 

chapter III). Table 4 shows the evaluation results of this ap-

proach.  

TABLE 4: METRICS FOR SIMPLE COMMAND PREDICTION MODEL 

 #Tg

C 

Rec

R 

[%] 

Err

R 

[%] 

Rej

R 

[%] 

Beta 

[%] 

CpE

R 

[%] 

#NPC 

Vienna 3556 39.4 1.4 59.4 34.5 35.2 924 

Prague 4566 70.3 0.4 29.6 63.3 21.5 350 

 

Compared to our baseline the average number of predicted 

commands is reduced by a factor of 12 resp. 6, but this reduc-

tion comes with a price. The reduced set of predicted com-

mands drops the RecR for the Vienna test data to 39.4% (base-

line 60.4%) resp. 70.3% (baseline 88.1%) for Prague.  

The poor quality of the CPM and the resulting large loss in 

RecR comes from the limited amount of training data. To im-

prove the quality of the CPM we used the window based ap-

proach (see section III.D). We experimented with different ex-

pansion windows from 3x3 nm to 29x29 nm. The results of this 

approach are shown in Table 5  (Vienna) and Table 6 (Prague). 

TABLE 5: VIENNA - METRICS FOR WINDOW BASED CPM 

 #TgC RecR 

[%] 

Err

R 

[%] 

Rej

R 

[%] 

Beta 

[%] 

CpE

R 

[%] 

#NPC 

3x3 3556 51.9 1.68 46.6 17.6 16.60 1026 

5x5 3556 54.8 1.75 43.6 12.4 12.30 1104 

7x7 3556 56.8 1.90 41.5 9.0 9.61 1170 

9x9 3556 57.9 1.93 40.4 6.7 8.22 1229 

11x11 3556 58.4 1.96 39.8 5.6 7.40 1274 

13x13 3556 58.1 1.93 40.1 6.1 8.14 1215 

15x15 3556 58.5 1.93 39.8 5.4 7.59 1246 

17x17 3556 58.6 1.96 39.6 5.0 7.24 1277 

19x19 3556 58.9 1.98 39.3 4.4 6.89 1304 

21x21 3556 59.0 1.98 39.1 4.1 6.74 1328 

25x25 3556 59.1 2.01 39.1 4.0 6.44 1368 

29x29 3556 59.2 2.22 38.7 3.8 6.21 1400 

 

By enlarging the CPM through the window based approach 

we observe an increase of RecR, but also an increase of ErrR 

and average number of predicted commands (#NPC). If we put 

the gain in RecR against the loss in ErrR we can see a benefit 

up to a window size of 25x25 for Vienna and Prague. At this 

window size we still have a gain in RecR of 0.1% for Vienna 

and Prague, but only a loss in ErrR of 0.03% for Vienna resp. 

0.00% for Prague. 

TABLE 6: PRAGUE - METRICS FOR WINDOW BASED CPM 

 #Tg

C 

Rec

R 

[%] 

Err

R 

[%] 

Rej

R 

[%] 

Beta 

[%] 

CpE

R 

[%] 

#NPC 

3x3 4566 82.7 0.68 16.9 36.9 8.02 464 

5x5 4566 85.3 0.70 14.3 25.2 5.13 511 

7x7 4566 86.0 0.70 13.5 21.1 4.19 541 

9x9 4566 86.6 0.77 12.9 18.2 3.57 562 

11x11 4566 86.9 0.77 12.6 16.6 3.21 576 

13x13 4566 86.5 0.76 13.0 18.8 3.78 552 

15x15 4566 86.8 0.80 12.7 16.8 3.48 564 

17x17 4566 87.1 0.80 12.3 15.5 3.05 574 

19x19 4566 87.4 0.83 12.1 14.6 2.80 583 

21x21 4566 87.6 0.85 11.9 13.5 2.56 591 

25x25 4566 87.7 0.85 11.7 12.5 2.35 604 

29x29 4566 87.8 0.93 11.6 12.4 2.29 615 

 

 If we compare the results of the 25x25 window to our 

baseline the loss in RecR is 1.3% (Vienna) resp. 0.4% (Prague) 

and the improvement in ErrR is 1.69% (Vienna) resp. 0.25% 

(Prague). The difference between baseline and the window 

based approach is relatively small. The benefit of the window 

based approach becomes visible, when we take the predicted 

command set size into account. Compared to the baseline the 

window based approach delivers fewer predicted commands. 

For Vienna and Prague we get an average #NPC of 1368 resp. 

604. That means a reduction of the predicted command set size 
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by a factor of 8 resp. 3 compared to baseline with all possible 

commands predicted. The smaller the predicted command set 

size is, the better the output of the speech recognizer and the 

better the filtering of the “Checker” will be. The search lattice 

size (see explanation of Figure 2) exponentially depends on 

predicted command set size. 

 

Figure 7 Dependency of ReCR from training data size (Vienna) 

The acceptable size of the predicted command set that is 

applicable depends on the application and how fast it has to 

update. For an application in which the predicted command set 

only significantly changes every 60 seconds, a bigger predicted 

command set is not an issue.  

 

Figure 8 Dependency of RecR from training data size (Prague) 

To determine the relevance of training data for a CPM we 

trained the model with different amounts of data from 10% to 

100% of the available training data. We executed those evalua-

tions for all window sizes for Vienna and Prague. The results 

for RecR can be seen in Figure 7 and Figure 8. If we look at 

the results with only 10%, 20% and 30% of the training data, 

there is a relatively big increase in recognition rate especially 

with small window sizes. This difference decreases with larger 

window sizes, because the larger windows compensate some of 

the missing data. With more training data the increase in RecR 

gets visibly smaller, but if we look at the difference between 

90% and 100% of the data, we still get an increase in RecR of 

0.14% (Vienna) resp. 0,02% (Prague) with a window size of 

29x29. That does not seem like a large improvement, but we 

have to take into account that the 29x29 window already com-

pensates for a huge amount of not available training data. To 

conclude: With more training data a small improve in RecR is 

still possible. Also the window size for the CPM could be re-

duced with more training data, since the need to compensate 

missing training data would be smaller. 

VI. DISCUSSION OF RESULTS AND NEXT STEPS 

The output of the current version of the acoustic and lan-

guage model are quite noisy with respect to command recogni-

tion (RecR) and command error rate (ErrR). Although we 

have only RecR of 60.7% resp. 89.0% in the learning data, the 

learned models for the checker could reduce ErrR by a factor 

of 5 for both Vienna and Prague approach (from 10.9% to 

2.0% for Vienna resp. 4.1% to 0.8% for Prague). Obviously the 

size of training data also increases the RecR, which is of 

course limited by the recognition rate without using the 

“Checker”.  

Figure 7 and Figure 8 shows a logarithmic dependency of 

recognition rate from data size (ds). If we assume the relation  

ds = m*ln(RecR) + b  

we could expect an increase of RecR for Vienna from 

58.6% to 59.4% by increasing recorded speech data size by a 

factor of 2 (i.e. from 18.7 to 35.4 hours) and of 61.6% if we 

increase by a factor of 10 (window size 17x17 nm). For Prague 

we could expect an increase from 87.1% to 88.3% (two times 

more data) resp. 90.9% (10 times more data). These numbers 

should just show that more data can improve recognition quali-

ty, but the effects will be even smaller, because RecR after re-

jection could not be better than the RecR without rejection. 

If data size is limited (which is always the case) we can also 

improve recognition rate by increasing the window size which 

emulates the availability of more data. Increasing window size 

also increases the error rate, because the areas of outliers and 

false rejection are also enlarged (see Figure 6). Currently we 

are improving our window model by (1) introducing a dynamic 

filter for outliers (not always just remove fields which are 

marked once), (2) varying the effect the expansion window has 

on surrounding areas (not increase all areas in the window by 

1.0) and (3) using expansion windows which are command 

type dependent. The area for an ILS clearance is much smaller 

than for a descend clearance. Therefore, smaller windows are 

more suitable for the ILS clearance. On the other hand the area 

for a reduce command is comparable to the area size of a de-

scend command. We, however, only have 450 commands for 

learning the reduction area, but 2’150 command for learning 

the descend area. Therefore, window size should also depend 

on number of available training data for a command type. 

Recognition rates of 60% (Vienna) resp. 88% (Prague) 

seem to be low compared to 95% reported by the AcListant® 

project [5], [6]. We should, however, keep in mind, that we on-

ly concentrated on the “Checker” component. An improved 

CPM also improves the ABSR output itself (yellow part in 

Figure 2) and it will help to improve acoustic and language 

model improvement which will result in better inputs for CPM 

learning. 
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VII. CONCLUSIONS 

We presented an algorithm which automatically learns a 

model to predict radar approach controller commands using 

only radar data, flight plan information and recorded untran-

scribed controller utterances. Compared to a neural network 

based approach resulting in a black box model the presented 

model is based on a decision tree. The command prediction 

model (CPM) was validated against transcribed controller 

commands for Vienna and Prague approach for the feeder and 

sector position, i.e. four command prediction models were 

learned. In this study the CPM was used for filtering the output 

of an automatic speech recognizer with low performance 

(89.0% for Prague and 60.7% for Vienna), i.e. for rejecting 

wrongly recognized commands. The presented machine learn-

ing based algorithm for controller command prediction was 

successfully validated: Command error rates could be reduced 

from 4.1% to 0.9% for Prague approach and from 10.9% to 

2.0% for Vienna approach.  

Compared to AcListant® project with recognition rates of 

95% the presented recognition rates seem quite low. This 

study, however, only uses pure radar and flight plan data and 

does not use the outputs of an arrival manager, which also con-

tributed to the high recognition rate in the AcListant® project. 

Furthermore the improved CPM will improve machine learning 

of acoustic and languages models again resulting in an im-

proved CPM. 

Overall, the impact of the solutions of the MALORCA pro-

ject when integrated into the current ATM procedures is ex-

pected to be high, especially due to minimizing the total costs 

related to the implementation of decision and negotiation sup-

port systems and related to the maintenance and system chang-

es towards new ATM procedures. 
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