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Abstract——Situation awareness of today’s automation relies so 
far on sensor information, data bases and the information 
delivered by the operator using an appropriate user interface. 
Listening to the conversation of people is not addressed until 
today, but an asset in many working situations of teams. This 
paper shows that automatic speech recognition (ASR) integrating 
into air traffic management applications is an upcoming 
technology and is ready for use now.  

Apple’s Siri® or Google’s Voice Search® are based on hundreds 
of thousands of hours of training data. This paper presents an 
assistant based speech recognition system (ABSR), based on only 
40 hours of training data. ABSR uses speech recognition 
embedded in a controller assistant system, which provides a 
dynamic minimized world model to the speech recognizer. ASR 
and assistant system improve each other. On the one hand, the 
latter significantly reduces the search space of the first one, 
resulting in low command recognition error rates. On the other 
hand, the assistant system gains benefits from ASR, if the 
controllers’ mental model and the model of the system deviate 
from each other. Then the controller cannot rely on the output of 
the system anymore, i.e. the assistant system is useless during 
these time intervals. By using ABSR the duration of these time 
intervals is reduced by a factor of two.  

Keywords—Arrival Management (AMAN), Automatic Speech 
Recognition (ASR), Workload 

I.  INTRODUCTION 

Conversation is a core element of society concerning its 
further development since centuries. Hence, a significant part 
of human collaboration is coordinated via voice, especially 
when complex contexts or meta-concepts are considered. By 
tracing communication new actors can get an idea of the actual 
and planned situations and interpret the actions, so that they 
can easily integrate themselves into this environment. Listening 
actors can follow the train of thoughts and are able to 
contribute to problem solving activities in an appropriate 
manner with own ideas. 

Nowadays, people get more and more supported by 
technical systems like assistant or decision support systems 
which can be found in nearly every working and leisure 
environment. Latest applications, like those by Apple (Siri®) 
[1], [2] and Google (Voice Search®) [3], use ASR as input 
interface for a direct communication between human and 
machine to trigger a defined action, as for instance a query. At 

least in nearly every medium-sized car [4], speech recognition 
is used to give voice instructions to corresponding assistance 
systems. However, all these systems still require improvements 
regarding their recognition rate, necessitating large future 
investments into ASR technology to receive the impression 
talking to a real human. 

In an air traffic control (ATC) working environment, 
communication between the involved parties is the most 
important mean to control the air traffic. Controlling aircraft in 
the vicinity of an airport is an example of such a working 
environment in which two working groups communicate, i.e. 
pilots and controllers. All pilots in the same sector are 
supported by a dedicated controller (team). They use a unique 
frequency for communication within this sector. This enables a 
party line effect, i.e. all actors – excluding today’s assistant 
systems – can create a common mental model of the current 
situation and of future actions. 

Furthermore, the complexity of today’s assistant systems 
steadily increases. On the one hand, computer power and 
system complexity continuously increases. On the other hand, 
automation lacks in intuitive interfaces for humans, which 
would enable a smooth and fluent interaction. An important 
ability is to follow human communication to react and adapt to 
a situation and reduce the amount of dedicated interaction 
between user and machine.  

Today, however, communication is still split into two 
different worlds: one in which humans communicate via radio 
links, and another in which machines communicate via 
computer networks. These two worlds are connected by a 
human machine interface used by humans to inform the 
machines and vice versa. Intents and plans of both humans and 
machines are the basis for these two worlds. As controllers are 
responsible for air traffic control, they sometimes implement 
plans deviating from those of the automation. If these 
deviations occur in situations with high workload, the 
controllers do not have time to inform the assistant system 
about their strategies and intentions. In these cases, the 
automation may suggest advisories contrary to the intent of the 
controller because the support system is not aware of operator 
induced deviations. Even worse, the operators have additional 
effort to inform the support systems about their 
communication. This situation may persist until the assistant 
system realizes the deviation, e.g. through the analysis of radar 
data. Hence, the system requires attention from the controllers, 



 

 

exactly when the controllers would urgently need the support 
of the system due to high workload. 

To overcome this situation and to enable air traffic 
management (ATM) systems to follow the conversation 
between controller and pilots, Automatic Speech Recognition 
is an important element of future ATM assistant systems. The 
ability to listen has to be implemented into the assistant system. 
This allows following the conversation and to synchronize the 
intents and strategies of human and machine world. 

Crucial for user acceptance is the quality of ASR, 
especially recognition time and rate. Actual studies in the 
automotive environment achieve word recognition rates 
between 78% and 87% [5]. Such rates are far too low for an 
application in the ATC environment and here need to 
understand the whole command. Due to the high number of 
utterances per hour in ATC, too many corrections would be 
necessary for the controller, which would strongly decrease the 
acceptance of such a system. 

The integration of ASR into ATM systems has been 
attempted since (at least) the early 90s. We briefly review this 
prior work in section II. In section III it is shown how ASR has 
to be integrated with an assistant system, so that acceptable 
error rates are achieved. This enables common situation 
awareness without lack of information on the part of the 
automation and without discrepancies between voice 
communications and data link information. In other words, the 
ASR system is not blindly listening, but it is rather aware of the 
situation and, therefore, can actively anticipate the spoken 
commands. The recognized commands are then processed and 
relevant information is extracted to dynamically derive new 
planning and advisory. This win-win situation between the 
ASR component and the assistance system results in a more 
accurate and reliable assistance. 

Section V describes the different AMAN support levels 
offered to the controller during the trials, which are described 
in section IV. They have been performed with a combination of 
DLR’s arrival manager 4D-CARMA (4D Cooperative ARrival 
MAnager) [6], the speech recognizer from Saarland University 
(UdS) and approach controllers from Austrian, Czech and 
German ANSPs in the Air Traffic Validation Center at the 
DLR premises in Braunschweig. Section VI describes the first 
validation results. The last section describes further steps and 
summarizes the results. 

II. BACKGROUND 

Human-machine interaction systems have received a 
significant improvement in their performance in the last 
decade, leading to more sophisticated human-machine 
applications. Voice-enabled systems in particular are 
increasingly deployed and used in many different areas. The 
most popular use case among these is ASR deployed on most 
mobile phones. In fact, ASR systems are becoming a 
significant component in hand-free systems and a cornerstone 
for tomorrow's applications, such as smart homes [1]. ASR 
applications can be generally classified to three different 
categories based on the application purpose: 

1. Hand-free command & control: The purpose of these 
applications is to control a given system by relatively short 
spoken sentences. This type of application is widely 

spread, such as in mobile phones, TV sets or car 
navigation systems [4]. 

2. Dictation software: These systems mainly target the 
professional market as their adaptivity is not yet good 
enough for widely accepted consumer products [8]. 

3. Spoken dialog systems: These systems benefit from the 
advances of dialog management research, as well as ASR. 
Common examples are dialog systems used for train time 
table consultation [9]. Similarly, Siri® [1] and Google’s 
search by voice [3] are assistant systems that integrate 
question answering and spoken dialog functionalities.  

The ATM world, following and deploying the advances of 
today's research and technology, is increasingly developing 
ASR-based applications to provide more sophisticated assistant 
systems. ASR is a potential extension of many existing systems 
where speech is the primary mode of communication, such as 
Arrival Managers (AMAN), Surface Managers (SMAN), and 
Departure Managers (DMAN). First commercial 
implementations of an AMAN have been operational at hubs 
(Frankfurt, Paris) since the early 90s. Today, their application 
is still limited to the coordination of traffic streams between 
different working positions (e.g. sector and approach 
controllers) [10].  

Although ASR performance improved significantly in the 
last decade, it is far from being a solved problem, in particular 
for large vocabulary applications. Limited vocabulary (in-
domain) applications, however, are being more successfully 
deployed. Moreover, the existence of prior information about 
the task at hand and the expected spoken sentences summarily 
referred to as context can significantly improve performance. 
Early usage of context goes back to Young et al.’s works [11], 
[12], where they made use of sets of contextual constraints of 
varying specificity to generate several grammars. These 
grammars are then consecutively used during recognition until 
a satisfactory recognition hypothesis is found. Along this idea, 
Fügen et al. [13] also used dialogue-based context to improve 
ASR quality in their dialogue system where a Recursive 
Transition Network (RTN) representing the grammar is 
continually updated. 

The first attempts to integrate ASR in ATM systems goes 
back to Hamel et al. [14] who described the application of 
speech technology in ATC training simulators in the early 90s, 
however with limited success. Schäfer [15] used an ASR 
system to replace pseudo pilots in a simulation environment. 
He used a dynamic cognitive controller model. He, however, 
does not use an assistant system to dynamically generate the 
context so that assistant system and ASR improve each other. 
Dunkelberger et al. [16] described an intent monitoring system 
which combines ASR and reasoning techniques to increase 
recognition performance: In a first step, a speech recognizer 
analyses the speech signal and transforms it into an N-best list 
of hypotheses. The second step uses context information to 
reduce the N-best list. The approach presented in this paper, 
however, uses context to directly reduce the recognition search 
space, rather than only rejecting the resulting hypotheses. The 
latter approach would only reduce error rate without increasing 
recognition rate.  

These early attempts opened the gate to more concrete and 
successful applications of ASR in ATC training simulators. 
The FAA (Federal Aviation Administration) reports the 



 

 

successful usage of advanced training technologies in the 
terminal environment [17]. The Terminal Trainers prototype, 
developed by CAASD (Center for Advanced Aviation System 
Development, USA), is a complex system which includes 
speech synthesis, speech recognition, multimedia lessons, 
game-based training techniques, simulation, and interactive 
training tools. The German air navigation service provider DFS 
uses the system Voice Recognition and Response (VRR) of 
UFA (Burlington, MA) for controller trainings since August 
2011 [18] to reduce the number of required pseudo pilots in its 
flight service academy. These systems, however, are being 
used only for training purposes, due to the ASR standard 
phraseology limitations. In a more general application of ASR 
to ATM domain, Cordero et al. proposed to take advantage of 
the speech-to-text output of ASR systems to perform controller 
workload assessment, which was consequently used for 
automatic ATC events detection [19]. 

Although data link might replace voice communication in 
the ATC environment, voice communication and data link with 
their different advantages will coexist for a long time at least in 
General Aviation. Here voice communication will remain the 
central means of coordination in the foreseeable future. The 
agreements coordinated by voice, automatically have to be 
integrated into SWIM (System Wide Information 
Management) based on reliable speech recognition. The same 
applies for different types of on-board equipment of airliners. 
This supports the coexistence of varying levels of automation 
in different tightly-coupled subsystems. Furthermore, careful 
transitions between different levels of automation are more 
easily possible.  

ASR systems generally use the Word Error Rate (WER) 
metric for evaluation. This metric is defined as the distance 
between the recognized word sequence and the sequence of 
words which were actually spoken, referred to as the gold 
standard (see pp. 362-364 in [20]). WER is defined as a 
derivation of Levenshtein distance [21]: 

 

 

Here, ins(s) is the number of word insertions (words never 
spoken), del(s) is the number of deletions (words missed by 
ASR), sub(s) is the number of substituted words, and W(s) is 
the number of words actually said. In ATM, however, the 
WER is not descriptive enough as metric. One would rather 
prefer a metric assessing the rate of correctly recognized 
concepts. It is not important that ASR correctly recognizes 
“Good morning Lufthansa one two tree descend level one two 
zero”, but that the concept “DLH123 DESCEND 120 FL” is 
correctly extracted. The command error rate (CER) quantifies 
this metric. 

The proposed ASR system directly builds on the pilot study 
conducted by Shore et al. [22], [23]. The goal of this study was 
to provide a proof of concept for integrating situational context 
information into ASR for ATC task. Reported results strongly 
indicate that incorporating context information significantly 
reduces recognition error rates [24]. He, however, did not 
consider the problem of dynamically deriving the situational 
context. The work presented in this paper solves this problem 
by the “Hypotheses Generator” component, see next section. 

III. ASSISTANT BASED SPEECH RECOGNITION 

In a pilot study with a limited set of callsigns and 
commands, Shore [23] reported command error rates below 
5%. He used an acoustic model derived from the Wall Street 
Journal recognition corpus. This was the basis of the 
AcListant® project started in Feb. 2013 [25].  Due to the 
considerably larger number of callsigns and commands in this 
project, initial experiments using the same corpus returned 
command error rates greater than 70%. In the first project 
phase many hours of speech samples from real controller pilot 
communication were recorded and annotated, i.e. every 
controller utterance was written down word by word. The 
resulting model already improved recognition rates drastically 
from 30% to 80%, but error rates were still above 20%. 
Therefore, we concentrated on providing dynamically 
generated situational context to improve performance. 

Figure 1 describes the concept of assistant based speech 
recognition (ABSR). An “Assistant System” (in our case the 
Arrival Manager 4D-CARMA) analyses the current situation of 
the airspace and predicts possible future states. 

The output of the Assistant System, the context, (e.g. 
aircraft sequences, distance-to-go, minimal separation, aircraft 
state vectors) is used by the “Hypotheses Generator” 
component. The “Hypotheses Generator” does not know 
exactly which commands the controller will give in the future, 
but it knows which commands have a higher probability than 
others in the current situation.  

 

Figure 1. Components of Assistant Based Speech Recognition 
 

These hypotheses are entered into the “Automatic Speech 
Recognition” block, which itself consists of the following 
components: the “Speech recorder”, the “Lattice generator”, 
“Speech Recognizer”, and the “Command Extractor”. A 
microphone is connected to the “Speech Recorder”, being 
responsible for recording the speech signal. This is normally a 
wave file (16 kHz, mono). The lattice generator creates a 
reduced search space for the “Speech Recognizer” using the 
output of the “Hypotheses Generator”. For the input “DLH496 
REDUCE 230-240” it is of course not sufficient to generate 
only the two sentences “Lufthansa four nine six reduce two 
three zero knots” and “Lufthansa four nine six reduce two four 
zero knots”. The controller may for example articulate the 
callsign as “four nine six”, “hansa”, “hansa four nine six” etc. 
Also, while “speed two three zero” is possible in the 
hypotheses input, “increase two three zero” is not. The “Speech 



 

 

Recognizer” transforms the speech signal into a feature vector 
FT and searches the most probable sequence of words , 
which is licensed by the generated search lattice. 

 	 arg
	 	

|	  
 

As P(W/FT) is often unknown, we use Bayes’ Theorem to 
reformulate the equation: 


	 arg

	 	
| 	 

 

We are not interested in the absolute value of the 
probability. It is sufficient to find the best fitting word 
sequence . Therefore we can eliminate the a priori 
probability for the feature vector P(FT). 

 arg
	 	

| 	 	 

 

The a priori probability of the words P(W) we derive from 
the language model (grammar). The conditional probabilities 
P(FT/W) are given by the acoustic model. More details can be 
found in the master thesis of Anna Schmidt [26]. 

The most probable word sequence W might be e.g. 
“Lufthansa four nine six thank you normal speed however 
maintain one seven zero knots or greater to six miles final 
descend altitude tree thousand…” We are not interested in 
every single word of this utterance. We need the relevant 
concepts, which are marked in bold face. This is the task of the 
“Command Extractor”, which creates from the above example 
the command sequence “DLH496 SPEED_OR_ABOVE 170, 
DLH496 DESCEND 3000 ALT” The command extractor also 
assigns a plausibility value to each extracted command. 

On average, the “Lattice Generator” needs 5 seconds to 
generate a new search lattice. The “Speech Recognizer” needs 
one second per sentence on average. A rejection time of more 
than two seconds is, however, not acceptable. As “Lattice 
Generator” and “Speech Recognizer” run in parallel, the 
“Speech Recognizer” can immediately start as soon as the 
controller has finished his utterance. It always uses the latest 
search lattice. 

The extracted commands are sent back to the assistant 
system, namely to the “Plausibility Checker” component, 
which also uses e.g. the context knowledge, the plausibility 
values, and the command hypotheses to reject recognized 
commands. Commands which are not in the current context are 
further checked by future radar data if they have very high 
plausibility values. Otherwise, they are rejected at once. A turn 
left and a turn right command for the same aircraft in the same 
utterance is also immediately rejected etc. The “Plausibility 
Checker” divides the recognized commands into three sets 

 Commands (immediately) accepted by AMAN, 

 commands (further) monitored, and 

 commands (immediately) rejected. 

The first two sets are input into the “Command Monitor” 
component. It tries to verify “commands further monitored” 

through upcoming radar data. If an aircraft with a turn left 
command starts a left turn after the command, it is probable 
that the speech recognizer output was correct. In this case the 
commands are transferred into the set of “commands, accepted 
by AMAN”. The commands in this set are also further 
observed and checked against the radar data. If a descend 
command with an end value of flight level 100 was recognized 
and the aircraft is not descending after some time or the aircraft 
passes flight level 90, this command is transferred to the set of 
“commands rejected”. The “Command Monitor” ensures that 
in the case of ASR failure the system behave in the same way 
as without a speech recognizer. In this case, the controller’s 
actual utterance is unknown and the assistant system performs 
e.g. sequence updates solely based on radar data.  

Our approach requires the following three main functions: 

1. Creation of hypotheses about possible future airspace 
situations and the corresponding commands (component 
“Hypotheses Generator” in combination with 4D-CARMA 
core components) 

2. Highly reliable speech recognition based on dynamic 
update of hypotheses (components of Speech Recognizer 
Block plus “Plausibility Checker” and “Command 
Monitor”) 

3. Updating of assistant systems based on the obtained voice 
communication information (Using output of “Plausibility 
Checker” and “Command Monitor”) 

IV. VALIDATION TRIALS 

The validation process of the AcListant project is 
implemented according to the European Operational Concept 
Validation Methodology (E-OCVM) [27]. Therefore, several 
validation trials have been conducted since the start of the 
project in spring 2013 in an iterative way. The described results 
are based on the last but one iteration loop taking place in 
October 2014.  

The basic setup consists of one controller working position 
and two pseudo pilot stations to handle the air traffic. The 
simulated airspace is the TMA of the airport Düsseldorf 
(EDDL) with only arrival traffic being modelled. The 
controller working position is equipped with an advanced radar 
screen, which is described in detail in the following section and 
a speech log screen. Flight information is handled by paper 
flight strips to reflect the situation at Düsseldorf. The exception 
is the manual input scenario (see below), where the controllers 
use computer devices to document their clearances. The speech 
recognition directly uses the microphone output signal from the 
controller. To ensure diversity in these trials, the three 
participating controllers are selected in a way that there are 
both male and female participants as well as both native 
German speakers and a speaker from Eastern Europe in the 
team. Two of the controllers already have experience with 
advanced speech recognition, one is a novice. To allow a one 
day effort per test person, the number of runs is limited to six, 
each of which has a duration of approximately 50 minutes. 

As seen in Figure 2, two validation questions are addressed 
by the trials. The first question addresses the functionality 
benefits of an AMAN with additional input compared to a 
simple AMAN. The second one addresses the reduction of 
controller workload concerning the way the input is delivered 
to the assistant system. The additional inputs are the 



 

 

communicated advices between controller and pilots. In both 
cases the first step is the analysis of the baseline, i.e. the 
situation without any controller assistant system (represented 
by square 1 in Figure 2). To answer the first question, a run 
with a standard AMAN without additional input (square 2) and 
a run with advanced AMAN with additional input created by 
ASR support (square 4) are conducted in addition to square 1. 
To answer the second question, additional runs with an 
advanced AMAN, either with manual input device (mouse and 
keyboard) (square 3) or with ASR support (square 4) are 
performed. Manual resp. ASR inputs are used as additional 
information for the AMAN’s planning cycle.  

 
Figure 2. AMAN functionality vs. workload diagram 

 
As the AMAN support is especially useful in situations, 

which are unexpected and provoke a new sequence, special 
scenarios are set up. For the first one, an aircraft emergency 
due to a sick passenger is simulated and for the second one a 
temporary runway closure is implemented. To reduce the 
learning effects, the callsigns are changed for each of the runs 
with the same scenario. Therefore, each controller has to 
manage the six runs shown in TABLE I. . The numbers reflect 
the order, in which the trials were set up in October 2014. . 

TABLE I.  SCENARIO SEQUENCE 

Simulation configuration Emergency Runway Closure 
Baseline 1 4 
Standard AMAN 3 - 
Advanced AMAN with 
manual input 

- 5 

Advance AMAN + ASR 6 2 
 
 

The emergency scenario is used to answer the validation 
question of the functionality benefits of an AMAN, The 
runway closure scenario is used to address both validation 
questions, i.e. the functionality benefits and the workload 
reduction by using ASR instead of mouse and keyboard. For 
conducting the trails, each controller starts with an additional 
short training scenario to become familiar with the 
environment.  

V. INCREASED LEVELS OF AMAN-SUPPORT 

The four simulation configurations described in TABLE I. 
offer different levels of support to controllers using DLR’s 
radar display “RadarVision” [28]. The baseline configuration 

includes a state-of-the-art radar screen showing airspace 
layout of Düsseldorf. Each aircraft position is shown by a 
circle with an attached label, which shows callsign, aircraft 
type, altitude and speed. A speed vector (predicted aircraft 
position in e.g. 90 seconds) can be shown to the controller on 
request. The support of the AMAN configurations stepwise 
increases, starting with configuration 4D-CARMA (square 2 in 
Figure 2). Supporting data calculated by the AMAN contains 
touchdown sequences, as well as four-dimensional trajectories 
and derived distances. On the timeline every aircraft is 
displayed as a label with its sequence number, calculated 
distance-to-go [29] (nautical miles until threshold also known 
as “miles-to-fly”), weight class and callsign. 

 
Figure 3. Two blue “Heavy” and six brown “Medium” aircraft approach an 

airport with two parallel runways and a specific airspace structure. The 
‘Centerline Separation Range’ on the bottom shows separation of all aircraft 

and trends of separation on final (CFG895), base (DLH3215) and for 
“Directs” (SAS1629) with assigned waypoints on the centerline (DL455). 

(“>4.89<” means distance in NM decreases since last radar update). 
 

Furthermore, there is a “Centerline Separation Range” [30], 
[31] at the bottom of the radar screen (see Figure 3). This 
window shows the projected centerline separation in nautical 
miles between aircraft flying already on the centerline, base leg 
or which got a direct in approach from the controller. 

The benefit of the “centerline separation range” for the 
controller is a good comparability of remaining flight distances 
for different kinds and origins of aircraft on one virtual 
centerline. Minimum separation between e.g. two direct flights 
from two different cardinal directions onto the same runway 
can be established already very early and far away from the 
centerline. 

Highlighting an aircraft using mouse-over function in an 
AMAN configuration shows planned trajectory and an 
extended label (see Figure 4). As described in the previous 
chapter the controller has to input additional information to 
reach the highest AMAN functionality, see square 3 and 4 in 
Figure 2. For manual input a mouse interface is used to 
quantify the benefits between ASR and mouse or keyboard. By 
clicking on a label or head symbol a drop-down menu offers 
various values of which one has to be chosen and confirmed. 
Values encompass heading, speed or altitude, resp. waypoints 



 

 

for “direct-to” commands, controller positions for “handover” 
commands, runways for “cleared ILS” commands or other 
holding and path stretching possibilities. 

 
Figure 4. Integrated display information for a single highlighted aircraft. 

Extended label includes current heading “082”, callsign “DLH3215”, current 
flight level “70”, current speed (“22”=220 knots), aircraft type “B735”, 

distance-to-go “24”, last altitude and speed controller command “F70 –“. The 
head symbol is brown for weight category “Medium”, contains current 

sequence number “2”, and has a small white current heading line and a thin 
yellow short term flight prediction line for the position in 70 seconds marked 
with a break for the next 60 seconds position. Yellow dots show the history of 

radar positions; the thick yellow line is the AMAN-planned 4D-trajectory. 
 

These additional inputs enable the high sophisticate version 
of AMAN to know the controllers intent as early as possible. 
This knowledge is used for an update of the planning of the 
AMAN if the actual intent of the controller does not fit to the 
actual AMAN planning. The impact of the additional input can 
be easily understood e.g. by the first simulation scenario. In 
this scenario, the information that the controller will guide the 
emergency aircraft directly to the runway enables the high 
sophisticated AMAN to immediately reschedule the whole 
arrival situation. Without this information the AMAN need 
more than 30 seconds to recognize the new situation. During 
this time span the controller will not be supported by the 
system. Displaying the wrong situation is more distracting for 
the controller than offering no support to the controller.  

On a more abstract level of the description above we can 
talk about differences between the mental model of the 
controller and the model of the system concerning the actual 
and the predicted situation. At the moment the controller plans 
to prioritise the emergency aircraft the situational models of 
controller and of the system deviate. This deviation exists as 
long as the assistance system gets information about the 
situational change. After gaining the information the system is 
able to update its situational model towards the mental model 
of the controller. The needed information can be provided by 
mouse input or by speech recognition of the communication 
between controller and pilot. The choice of the additional input 
source has no effect on the support of the AMAN, but on the 
workload level, see square 3 and 4 in Figure 2. 

VI. VALIDATION RESULTS 

In the first subsection we define the used measurements. In 
the second part we present the results we obtained during the 
October trials described in section IV. In the next subsection 
we concentrate on our current results (Jan. 2015) obtained after 
tailoring the used parameters and correction of some errors. 

A. Derived Measurements  

The controller using an ABSR system is interested in a high 
recognition rate and a low error rate. The “Speech Recognizer” 
(see yellow part in Figure 1) together with the “Hypotheses 
Generator” is responsible for the high recognition rate, whereas 
the “Plausibility Checker” enable a low error rate, by rejecting 
some outputs of the “Command Extractor”. TABLE II. shows 
that we have to distinguish between two error sources:  

TABLE II.  ERRORS OF FIRST AND SECOND ORDER 

  Plausibility Checker accepts 
(rejection is false) 

Plausibility Checker rejects 
(rejection is true) 

 
 

ASR is 
correct 

The desired behavior. 
ASR correct and not rejected 
 
Probability: 1 – α =  
    P(correct / accepted) 

2nd order error / false alarm 
rate: Command rejected al-
though ASR output of 
recognized command was 
correct. Probability: β =  
   P(correct / rejected) 

 
ASR is 
wrong 

 

1st order error: 
Command accepted although 
ASR is wrong. Probability  
    α = P(err / accepted) 

ASR is wrong and it is rejected 
ASR has no negative effect. 
Probability: 1-β =  
   P(err / rejected) 

 

Therefore, we have to distinguish three command sets: 

 commands given by the controller (the real commands), 

 commands recognized by ASR, and 

 commands shown to the controller. 

TABLE III.  SEVEN CASES HOW TO REACT TO AN UTTERANCE 

  Plausibility Checker accepts 
Given / Recognized /Shown 

Plausibility Checker rejects 
Given / Recognized /Shown 

ASR is 
correct 

Hdg. 250 / 250 / 250 C7 
RcRASR =100%; RcRTtl =100% 

Hdg. 250 / 250 / rejected C3
RcRASR =100%; RjRTtl =100% 

 
 

ASR is 
wrong 

 
Hdg. 250 / 240 / 240 C5 

ErRASR =100%; ErRTtl =100% 

No Cmd / 240 / 240 C6 
ErRASR =100%; ErRTtl =∞ 

Hdg. 250 / 240 / rejected C1
ErRASR =100%; RjRTtl =100% 

No Cmd / 240 / rejected C2 
ErRASR =100%; RcRTtl =100% 

Hdg. 250 / nothing / rej. C4 
DlRASR =100%; RjRTtl =100% 

RcR, RjR, ErR, specify the recognition, rejection and error rates; rates values not specified are zero. 
 

TABLE III. explains the seven different cases which may 
occur. We assume that a heading command with a value of 250 
degrees is given. ASR may recognize a correct command (Hdg. 
250), a wrong command (e.g. Hdg. 240) or may recognize 
nothing (del.). Cases C2 and C6 are special cases. No 
command is given, but ASR has recognized a command. This 
problem occurs e.g. if a long controller utterance containing 
only a single command is split into two or more commands by 
ASR. 

We define the ASR recognition (RcR), ASR deletion (DlR) 
and ASR error rate (ErR) (# denotes “number of”). 


# 	 3, 7

# 	
∗ 100%  


# 	 4

# 	
∗ 100%  



 

 


#	 	 1, 2, 5, 6	
#	 	

∗ 100%	 

 

Accordingly we define the Total rates resulting from the 
commands shown to the controller (case C2 is not counted): 


#	 	 7

#	 	
∗ 100%	 


#	 	 1, 3, 4
#	 	

∗ 100%	 

#	 	 5, 6	
#	 	

∗ 100%	 

The recognition rate, when considering only the ASR 
component; is higher compared to the combined system of 
ASR and Plausibility Checker. The prize would be an increase 
in the error rate because some errors are not rejected. The 
Plausibility Checker decreases the error rate. The prize we 
have to pay is an increase of the rejection rate resulting in a 
decrease of the recognition rate. 

We measure the performance of the Plausibility Checker by 
the parameters α and β. α measures the remaining errors (1st 
order errors). It is defined by the conditional probabilities: 

α P error	|	accepted
P err 	acc
P accepted

P Case	C5, C6
P Case	C5, C6, C7

 

β measures the case that the Plausibility Checker rejects a 
command although ASR has recognized it correctly (2nd order 
errors): 

β P correct	|rejected
P cor 	rej
P rejected

P Case	C1, C4
P Case	C1, C3, C4

 

For the validation of the hypothesis that the usage of ASR 
improves the conformance of the planning of the controller 
with the planning of the system we compared the conformance 
of the system planned trajectory to the flown trajectory, i.e. the 
observed radar data. The update rate of the planned trajectory 
was 0.2 Hz. We measured how often we observed a time, 
lateral or longitudinal deviation between both trajectories for 
each aircraft. 

B. Results of the first Validations Campagn 

In section IV in TABLE I. we defined six runs for each 
controller. One run had to be performed twice, due to a 
network failure, and one guest controller performed an extra 
run, resulting with the three training runs in 23 runs altogether. 
The training runs are not considered for the two validation 
questions. Approximately 43,750 words were spoken and 4,230 
commands were given, i.e. each command had an average 
length of 10.3 words. The average recognition time per 
utterance (consisting sometimes of more than one command) 
was approximately 1.3 seconds on average, i.e. the time 
“Speech Recognizer” and “Command Extractor” needed. The 

“Lattice generator” needed on average below 6.8 seconds. The 
following TABLE IV. summarizes the observed rates of all 23 
performed runs respectively for only the 20 runs considered for 
answering the validation questions. 

TABLE IV.  ASR AND USER RATES OBSERVED DURING TRIALS 

  Recognition Rate Deletion/Rejection Rate Error Rate 
ASR 23 91,5% 1,5% 12,6% 

Ttl 3 87,4% 12,6% 4,2 
ASR 20 90.7% 1.4% 12.2% 
Ttl 20 86.7% 12.4% 3.9% 
α and  β are for the total  rates: 4.5% and 31.9%  for the 23 runs;  4.2% and. 31.6%;for the 20 runs. 

 

Although the recognition rate of 87.4% with an error rate of 
4.2% is not good we already could validate the hypothesis that 
ASR improves the conformance of controller’s model and the 
internal model of the assistant system. 

The following TABLE V. shows how the usage of ASR 
increases the conformance between system model and mental 
model of the controller, i.e. the functionality benefits of an 
AMAN supported by ASR. We compared for this purpose the 
9 runs of the emergency scenario (three controllers each 
performing baseline, AMAN and AMAN+ASR). 

TABLE V.  NON-CONFORMANCE OF PLANNED AND FLOWN 
TRAJECTORIES WHEN COMPARING DIFFERENT AMAN SUPPORT LEVELS 

 Support Condition Baseline  AMAN AMAN+ASR 
Controller C1 12.95% 19.65% 7.38% 
Controller C2 20.88% 19.24% 12.41% 
Controller C3 22.35% 20.88% 5.77% 
Average 18.70% 19.92% 8.52% 

In all three support conditions the number of samples (aircraft) was 23. 
 

Each controller guides 23 aircraft in each run. In the 
baseline the results of the AMAN were not shown to the 
controller. Nevertheless the AMAN runs in background 
generating trajectories. Aircraft in an arrival flow are not 
independent from each other. Therefore, we combined the ith 
aircraft of controller C1, C2 and C3 into one single average 
value. In this way we get 69 measurements for the non-
conformance by comparing the planned with the flown 
trajectories.  

 
Figure 5. Non-conformance of flown and planned trajectory 

during 3 different controller support conditions (average value and standard 
deviation interval) 



 

 

Figure 5 shows the average value and the interval of the 
standard deviation for the non-conformance frequency. An F-
Test with two respectively 66 degrees of freedom was 
performed: F(2,66)=20.37 with a p value of less than 1%. It 
was confirmed that AMAN with ASR is an improvement 
compared to both AMAN without ASR and to the baseline 
without AMAN. Bonferroni adaptation shows no significant 
difference between pure AMAN and baseline.  

With the runway closure scenario it was evaluated if we get 
the same improvements with respect to non-conformance of 
AMAN and controller models when using mouse and keyboard 
input instead of ASR input (see TABLE VI. ). The performed 
F-Test with one and 38 degrees of freedom could not falsify, 
that AMAN+ASR is worse than using mouse and keyboard 
input (F(1, 38) =0.18; p = 0.89). Controller feedback indicates, 
however, a heavy workload increase, when using mouse input.  

TABLE VI.  NON-CONFORMANCE OF PLANNED AND FLOWN 
TRAJECTORIES FOR COMPARING MOUSE WITH ASR SENSOR 

 Support Condition AMAN + mouse 
+ keyboard 

AMAN+ASR 

Controller C1 11.08%  9.94%
Controller C2 8.99% 11.60%
Controller C3 13.29%  12.37%
Average 11.12%  11.30%

In both support conditions the number of sample (aircraft) was 20. 
 

 

C. Problem Analyzis and improvements for the next campaign 

In the last subsection we showed that ASR improves the 
conformance of controller’s model and the internal model of 
the assistant system, although our recognition rate was only 
87.4%. Remaining errors and false rejections were analyzed. 
The resulting improvements which will also be used in the final 
validation trials in February and March 2015 are presented 
now. 

Some commands were not modeled, e.g. “hansa six yankee 
whisky speed own discretion” resulting in “OWN_SPEED” or 
“speedbird four one reduce minimum clean speed” resulting in 
“REDUCE_ MINIMUM_ CLEAN”. Sometimes ASR wrongly 
recognizes commands of the same command class type in one 
utterance, e.g. REDUCE and INCREASE or HEADING and 
DIRECT_ TO. In this case we reject both commands, resulting 
in a decreased error rate, but an increased rejection rate. Our 
third improvement was in the “Hypotheses Generator” 
component. During the October validations trials we had a 
hypotheses error rate of 4.3%. Our current hypotheses error 
rate is below 1.6%, i.e. in less than 1.6% of the cases the 
controller gives a command not expected by the hypotheses 
generator. These remaining context errors may result in an 
ASR error and then perhaps in a total error. In most cases this, 
however, results in a wrong command rejection. TABLE VII. 
shows the results we get after these improvements.  

Most of the remaining errors or rejections occur when the 
controller deviates from the modeled grammar, so called out-
of-grammar utterances. Here are some examples: 

 “air_berlin two four charly expect aeh some delay due to 
the runway closure of runway two three right about five 
minutes delay i call you back for further for the time 
continue on the domux two three transition” 

TABLE VII.  RATES AFTER GRAMMAR AND HYPOTHESES GENERATOR 
IMPROVEMENT, AND REJECTING COMMANDS OF SAME COMMAND CLASS  

  Recognition Rate Deletion/Rejection Rate Error Rate 
ASR 95,8% 0.3% 7.4% 
Total 94.3% 5.7% 3.5% 

α=3,6% and β=26.0% for the total rates for the 20 scenarios. 
 

  “jersey seven kilo whisky did you copy the information as 
well runway two three right is closed for about five 
minutes and i call you back when it is open again” 

 “air_berlin six six zero delta turn left heading two one zero 
cleared ils approach runway two three right intercepting 
from the north” 

These deviations will happen in real life, but they are the 
exceptions. We cannot cover them all by repeated grammar 
update because this would result in reduced recognition rate for 
the normal utterances. Therefore, our approach during the final 
validation trials is to use plausibility values for the single 
command. This means that the ASR system assigns to each 
command a plausibility value between 0.0 and 1.0. A one 
means that the ASR system is very sure that the output 
command is correctly recognized. The “Plausibility Checker” 
component will reject all commands which are below a given 
threshold. TABLE VIII. shows the obtained results if ASR also 
calculates plausibility values and threshold value 0.85 is used. 

TABLE VIII.  RATES OF TABLE VII.  WHEN USING PLAUSIBILITY VALUES  

  Recognition Rate Rejection Rate Error Rate 
ASR 95,8% 0,3% 7,4% 
Total 91,2% 8,8% 2.4% 

α=2.6% and β=52.8% for the total rates for the 20 scenarios. 
 

Figure 6 shows the relationship between different plausibility 
values on the one hand and (total) error and (total) rejection 
rate on the other hand. If we increase the plausibility value, we 
reduce the error rate, but as a negative side effect we increase 
the rejection rate. A value in the interval of [0.7..0.9] seems to 
be a good choice, i.e. recognition rates between 91 and 92%. 
 

 
Figure 6. Total Error and Rejection Rates for different plausibility values  

 
We performed the same evaluations not using the context of 
the assistant system, i.e. we just used ASR and not assistant 
based speech recognition. ASR recognition rates of 84% and 
error rates of 19.7% were observed. Using at least the 
“Plausibility Checker, but still not the “Lattice Generator”, we 
got the total rates shown in TABLE IX. for the different 
threshold values.  



 

 

TABLE IX.  PERFORMANCE OF ASR WITOUT LATTICE GENERATOR 

Plaus. Threshold 0.0 0.6 0.7 0.8 0.9 1.0 
Ttl Recogn Rate 82.6% 80.1% 78.7% 77.5% 74.5% 57,8% 
Ttl Error Rate 1.4% 1.3% 1.2% 1.0% 0.9% 0.6% 
Ttl Reject. Rate 17.4% 20.0% 21.3% 22.5% 25.5% 42.2% 
Rec Rate wih LG 94.3% 92.1% 91.9% 91.7% 90.4% 85.3 

The last row shows again the recognition rate using the full ABSR approach with “Lattice Generator”. 
 

Table IX shows that the explicit integration of the 
command hypotheses into the speech recognition itself and not 
only into the rejection process increases recognition quality by 
more than 10 percent (absolute, not only relative). The very 
small error rates of approx. 1% together with the high rejection 
rate of 20% shows that in case of ASR failure without context 
the recognized commands substantially differ from the 
command hypotheses. Hence, it is much easier to reject the 
false output (e.g. “DLH123 REDUCE 16” knots). 

VII. CONCLUSIONS AND NEXT STEPS 

A. Next steps 

Our results are based on a first validation performed in 
October 2014 with two male and one female controller which 
resulted in approx. 4,000 controller commands given in 23 
simulation runs. In February and March 2015 a second 
validation campaign will be conducted with 12 controllers. We 
expect 72 simulation runs and 12,000 controller commands. 

Most of the remaining recognition errors result from the 
fact that each controller uses her/his own phraseology subset. 
Our current approach was just to update the used grammar 
manually if we add a new controller to our data set. This is, 
however, not practical for real application in an ATC 
environment. Therefore, we are focusing on automatic learning 
of a language model, which will replace the usage of the 
grammar. 

In an ATC environment (independent of ASR) low error 
rates, e.g. 0.1% or even  10-6, are expected. Although great 
progress has been made in speech recognition we expect that 
these error rates will not be possible. We are developing 
assistant systems for the controller. Their task is to support the 
controller. If ASR helps the controller to increase efficiency or 
reduce workload it already has a great benefit. An example for 
integration of ABSR into electronic strips may illustrate this. If 
ABSR is correct, the controller just has to confirm the input 
into the strips. Let’s assume this takes two seconds. If ABSR is 
wrong or rejected, let us assume that a manually correction 
lasts ten seconds and the manual input of a complete clearance 
without ABSR by mouse and keyboard needs five seconds.  

TABLE X.  WORKLOAD FOR DIFFERENT RECOGNITION RATES 

Recognition Rate 0% 20% 70% 90% 95% 100% 
Needed input time C1 4.4h 7,5h 3,9h 2,5h 2,1h 1,8h 
Needed input time C2 8.9h 8.9h 4.4h 2.7h 2.2h 1.8h 

C1 is the experienced controller, described above (needing 5s for mouse input, 2s for ASR confirmation, 
and 10s for correction). C2 described the results for the controller preferring paper flight strips (needing 

10s for mouse input, 2s for ASR confirmation, and 12s for correction) 
.  

If we further assume that a controller position is operated 
for 16 hours per day and that the controllers at this position 
give 200 commands per hour, we can calculate the benefits of 
ABSR integration into electronic flight strips for different 
command recognition rates. TABLE X. shows that we can save 
between 1.9h and 6.2 h of controller workload with 90% 
recognition rate. 95% recognition only slightly increases these 

workload savings. The presented assistant based ASR system is 
ready for use. 

B. Summary 

The goal of this work was to show that assistant based 
speech recognition (ABSR) is ready for use for ATM 
applications. We selected DLR’s Arrival Manager 4D-
CARMA as a demonstration example. We created a validation 
setup consisting of six experiments for different controllers. On 
the one hand the experiments will be used to quantify the 
workload reduction of ASR for the controller, on the other 
hand to measure the increased support for the controller. The 
AMAN supports the controller in our validation setup 
especially in unusual traffic situation (e.g. runway closure, 
emergency) with sequence and distance-to-go information. 

 Important for the controller is on the one hand the 
command error rate of the speech recognizer especially when 
the output is directly used without acceptance or rejection 
through the controller. This is the case if ASR is used as 
additional sensor to update an assistant system. We focus on a 
low total error rate . TABLE V. shows that an error rate 
of 4% (TABLE IV. significantly improves the conformance of 
flown and planned trajectory. In other applications, e.g. 
maintenance of electronic flight strips, the controller on the 
other hand is just interested in a high recognition rate , 
i.e. it makes no difference for the user if the ASR output is 
wrong or if it is “only” rejected. TABLE X. shows that 
recognition rates of 90% are sufficient. If we, however, think of 
electronic flight strip maintenance without explicit acceptance 
of the controller, but with rejection possibilities error rates 
below 3% are requested. Without controller monitoring, 
however, we need error rates below 0.1% which are currently 
not achievable. 

We presented an architecture which uses the context 
information of an assistant system (e.g. an AMAN) for both the 
reduction of the search space of the speech recognizer and for 
rejecting misrecognitions of the ASR system. Only using the 
assistant system for search space reduction already enables 
recognition rates of more than 95%, but still with error rates of 
more than 7%. Using also the knowledge of the assistant 
system for rejections reduces error rate below 2.5%. The prize 
is a decrease of recognition rate from 95% to 91%, i.e. an 
increase of the rejection rate. 
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