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Abstract 
Nowadays Arrival Managers (AMAN) are 

available to produce efficient inbound traffic 
sequences and to create guidance advisories for 
optimized approaches. Information about deviations 
from the planned sequence is exchanged between 
controller and pilot via radio communication. The 
AMAN is only able to derive these deviations from 
the radar data. Using radar data as single input 
sensor, however, results in adaptation delays of 30 
seconds and more – and even worse, the controllers’ 
intent is still missing.  

The AcListant® AMAN (Active Listening 
Assistant) [1] has shown for the Dusseldorf Approach 
Area how to avoid this sensor delay by analyzing the 
controller-pilot-communication and using the gained 
information as an additional sensor. An Assistant 
Based Speech Recognition system (ABSR) is 
embedded in an AMAN, which provides a dynamic 
minimized world model to the speech recognizer.  

Validation trials were performed from February 
to March 2015 with seven male and four female air 
traffic controllers from Dusseldorf, Frankfurt, 
Munich, Vienna, and Prague. Depending on the 
accepted rejection rate of the speech recognizer, 
recognition rates between 90% and 95% were 
achieved, whereas without ABSR only rates between 
58% and 83% were possible. Furthermore ABSR 
significantly reduces the deviation between the 
controllers’ plan and the plan of the AMAN and, at 
the same time, significantly reduces the controllers 
workload. 

 

Introduction 
Conversation is a core element of society 

concerning its further development since centuries. 
Hence, a significant part of human collaboration is 
coordinated via voice, especially when complex 

contexts or meta-concepts are considered. By tracing 
communication, new actors can get an idea of the 
actual and planned situations and interpret the 
actions, so that they can easily integrate themselves 
into this environment. Listening actors can follow the 
conversation and contribute to problem solving. 

 Nowadays, people get more and more supported 
by technical systems like assistant or decision support 
systems which can be found in nearly every working 
and leisure environment. Latest applications, such as 
those by Apple (Siri®) [2], and Google (Voice 
Search®) [3] use Automatic Speech Recognition 
(ASR) as input interface for a direct communication 
between human and machine to trigger a defined 
action, as for instance a query. Speech recognition is 
used in most medium-sized cars [4]. However, all 
these systems still require improvements regarding 
their recognition rate. 

In an Air Traffic Control (ATC) working 
environment, communication between the involved 
parties is the most important mean to control the air 
traffic. Controlling aircraft in the vicinity of an 
airport is an example of such a working environment 
in which two working groups communicate, i.e. 
pilots and controllers. All pilots in the same sector 
are supported by a dedicated controller (team). They 
use a unique frequency for communication within 
this sector. This enables a party line effect, i.e. all 
actors – excluding today’s assistant systems – can 
create a common mental model of the current 
situation and of future actions.  

Today ATC communication is still split into two 
different worlds: one in which humans communicate 
via radio links, and another in which machines 
communicate via computer networks. These two 
worlds are connected by a human machine interface 
used by humans to inform the machines and vice 
versa. Intents and plans of both humans and machines 
are the basis for these two worlds.  



 

As controllers are responsible for air traffic 
control, they sometimes implement plans deviating 
from those of the automation. If these deviations 
occur in situations with high workload, the 
controllers do not have time to inform the assistant 
system about their strategies and intentions. In these 
cases, the automation may suggest advisories 
contrary to the intent of the controller, because the 
support system is not aware of agreements between 
human operators. Even worse, the operators have 
additional effort to inform the support systems about 
their communication. This situation may persist until 
the assistant system realizes the deviation, e.g. 
through the analysis of radar data. Hence, the system 
requires attention from the controllers, exactly when 
the controllers would urgently need the support of the 
system due to high workload. 

To overcome this situation and to enable air 
traffic management (ATM) systems to follow the 
conversation between controller and pilots, ASR is an 
important element of future ATM assistant systems. 
The ability to listen has to be implemented into the 
assistant system. This allows following the 
conversation and to synchronize the intents and 
strategies of human and machine world. Crucial for 
user acceptance is the quality of ASR, especially 
recognition time and rate.  

The integration of Automatic Speech 
Recognition (ASR) into ATM systems has been 
attempted since (at least) the early 90s. We briefly 
review this prior work in the next section. In section 
“The AcListant® Project“ we briefly describe the 
project which aims to integrate ASR with an assistant 
system, so that acceptable error rates are achieved. 
Section “Validation Trials” describes the performed 
validation at German Aerospace Center in 
Braunschweig. DLR’s arrival manager 4D-CARMA 
(4D Cooperative ARrival Manager) [5] and, the 
speech recognizer from Saarland University (UdS) 
were combined. Section “Validation Results" 
presents the results from trials with approach 
controllers from Austrian, Czech, and German Air 
Navigation Service Providers (ANSPs). The last 
section describes further steps and summarizes the 
results. 

Background 
Human-machine interaction systems have 

known a significant improvement in their 
performance in the last decade, leading to more 
sophisticated human-machine applications. Voice-
enabled systems in particular are increasingly 
deployed and used in many different areas. The most 
popular use case among these is the Automatic 
Speech Recognition deployed on most mobile 
phones. In fact, ASR systems are becoming a 
significant component in hand-free systems and a 
cornerstone for tomorrow's applications, such as 
smart homes [2].  

The ATM world, following and deploying the 
advances of today's research and technology, is 
increasingly developing ASR-based applications to 
provide more sophisticated assistant systems. ASR is 
a potential extension of many existing systems where 
speech is the primary mode of communication, such 
as Arrival Managers (AMAN), Surface Managers 
(SMAN), and Departure Managers (DMAN). First 
commercial implementations of an AMAN have been 
operational at European hubs (Frankfurt, Paris) since 
the early 90s. Today their application is often limited 
to the coordination of traffic streams between 
different working positions (e.g. sector and approach 
controllers) [6]. Implementations in Europe are e.g. 
OPTAMOS [7], OSYRIS [8], 4D Planner [9], [10], 
MAESTRO [11]. An extension of their application to 
support the controllers by advisories in order to 
implement fuel and noise efficient approaches (e.g. 
DLR’s AMAN 4D-CARMA [5], [12]) currently fails 
due to insufficient reliability of the advisories. The 
support quality of such systems highly depends on 
knowledge of the development of the situation in the 
airspace.  

Although ASR performance improved 
significantly in the last decade, it is far from being a 
solved problem, in particular for large vocabulary 
applications. Limited vocabulary (in-domain) 
applications, however, are being more successfully 
deployed. Moreover, the existence of prior 
information about the task at hand and the expected 
spoken sentences summarily referred to as context 
can significantly improve performance. The first 
attempts to integrate ASR in ATM systems goes back 
to Hamel et al. [13] who described the application of 
speech technology in ATC training simulators in the 



early 90s, however with limited success. Schäfer [14] 
used an ASR system to replace pseudo pilots in a 
simulation environment. He used a dynamic cognitive 
controller model. He, however, does not use an 
assistant system to dynamically generate the context 
so that assistant system and ASR improve each other. 
Dunkelberger et al. [15] described an intent 
monitoring system which combines ASR and 
reasoning techniques to increase recognition 
performance: In a first step, a speech recognizer 
analyses the speech signal and transforms it into an N-
best list of hypotheses. The second step uses context 
information to reduce the N-best list. Our approach 
described in more detail in [16], however, uses 
context to directly reduce the recognition search 
space, rather than only rejecting the resulting 
hypotheses. The latter approach would only reduce 
error rate without increasing recognition rate.  

These early attempts opened the gate to more 
concrete and successful applications of ASR in ATC 
training simulators, e.g. FAA [17] and DFS [18] for 
advanced training technologies, speech-to-text 
application for controller workload assessment [19]  
prevention of runway incursion problems due to 
clearances for closed or blocked runways by MITRE 
[20]. 

Although data link might replace voice 
communication in ATC environment, voice 
communication and data link with their different 
advantages will coexist for a long time at least in 
General Aviation. Here voice communication will 
remain the central means of coordination. The 
agreements coordinated by voice, automatically have 
to be integrated into SWIM (System Wide 
Information Management) based on reliable speech 
recognition. The same accounts for different types of 
on-board equipment of the airliners. This supports the 
coexistence of varying levels of automation in 
different tightly-coupled subsystems. Furthermore, 
careful transitions between different levels of 
automation are more easily possible.  

Our developed ASR system AcListant® directly 
builds on the pilot study conducted by Shore et al. 
[21], [22]. The goal of his study was to provide a 
proof of concept for integrating situational context 
information into ASR for ATC task. Reported results 
strongly indicate that incorporating context 
information significantly reduces recognition error 

rates [12]. Shore, however, did not consider the 
problem of dynamically deriving the situational 
context.  

The AcListant® Project 
Based on the results of Shore, Saarland 

University, and DLR started the venture capital 
funded AcListant® project (Active Listening 
Assistant) in February 2013. Its aim was to provide 
the arrival manager with an additional pair of eyes, 
i.e. an additional sensor which enables to detect 
deviations of the controller from the AMAN plan 
earlier than this is possible by observing only the 
radar data. This enables common situation awareness 
without lack of information on the part of the 
automation and without discrepancies between voice 
communications and data link information.  

Operational Concept  
The AcListant® Workplace makes explicit use 

of dynamic context information by the ASR 
(automatic speech recognition) system. This context 
information is derived by an assistant system, in this 
case an AMAN. The assistant system informs the 
ASR of expected and possible air traffic controller 
advisories, i.e. it continuously creates context 
information. Consequently these speech hypotheses 
help the speech recognizer to detect speech 
commands with improved reliability. Based on the 
extracted information from the controller-pilot 
communications, the assistant system can more 
quickly adapt its own model, i.e. its knowledge 
concerning possible future system states. 

In the next section we will go into detail 
regarding the implementation of AcListant’s 
operational concept. 

Technical Implementation 
The presence of information about the target task 

can significantly improve the ASR performance. 
More particularly, radar information, flight plan data, 
aircraft status information etc. available during ATC 
tasks can be used to improve the speech recognition 
quality. Our Arrival Manager 4D-CARMA derives 
context information from above mentioned input data. 
The context is input into the Hypotheses Generator 
dynamically generating a set covering the possible 



commands which can be spoken in the current 
situation. These predictions can then be used to 
improve the speech recognition performance by 
reducing the search space of the possible utterances. 

We call this approach Assistant Based Speech 
Recognition (ABSR) [16]. Speech recognition and 
assistant system improve each other. On the one hand 
the context of the assistant system reduces the search 
space. This increases recognition rate and recognition 
speed. On the other hand the assistant sensor gets an 
additional input sensor, i.e. another pair of eyes. In an 
emergency situation the controller may e.g. change 
the initial sequence and give a direct waypoint or 
heading command to the emergency aircraft. Without 
speech recognition the assistant system, e.g. an 
AMAN, will not immediately detect the new 
situation. Either the controller informs the AMAN via 
additional mouse or keyboard commands, which 
causes additional workload, or the AMAN has to 
observe the radar data until it is obvious, that the 
controller will deviate from the planned sequence and 
trajectories. In this case, however, the AMAN only 
knows that the controller deviates, but he/she does 
still not know what the controller really wants.  

With ABSR, the system immediately knows that 
the controller e.g. gives a “direct-to-waypoint” 
command. The system already knows that, before the 
pilot has confirmed the command via read-back or the 
aircraft has started the direct approach. The AMAN 
can update the trajectory of the emergency aircraft, 

and even more important, the AMAN can 
immediately update the whole sequence and, 
therefore, also can update the trajectories of the other 
aircraft. This is the support, the controller needs in an 
unusual situation! 

Controller Display with speech recognition 
output 

The prototypic air traffic controller display 
RadarVision (Figure 1) visualizes air traffic situation 
and planning data from a database, which stores 
among others planned touchdown sequences, aircraft 
arrival times, trajectories and advisories, calculated 
by the arrival management system. The situation data 
display is a conventional radar screen and visualizes 
aircraft positions with additional information in 
labels on a two-dimensional airspace map. 
Alphanumeric data in the flight data block consists of 
callsign, weight category, current altitude, speed, 
aircraft type, and computed distance-to-go. By 
highlighting an aircraft the actual heading as well as 
last clearances on altitude and speed are visible. 
Furthermore the calculated future trajectory is shown 
as a yellow solid line. 

As depicted in Figure 1 the prototypic controller 
HMI RadarVision shows a radar screen with AMAN 
data (timeline with sequences and planned 
touchdown times, yellow trajectory, values for 
distance-to-threshold and a centerline separation 
range).  

 

Figure 1: Prototypic Controller HMI RadarVision



The Düsseldorf airspace in AcListant® 
configuration on the radar screen consists of 
runway 23R, significant waypoints of the 
Aeronautical Information Publication (AIP), such as 
Initial and Final Approach Fixes (IAF/FAF), marked 
centerline and downwinds. The Centerline Separation 
Range at the bottom of the display in Figure 1 points 
out distances between aircraft on the real and virtual 
centerline in nautical miles. Distances are calculated 
for each aircraft on its final leg. Furthermore, the 
hypothetic distance on an elongated centerline is also 
computed for aircraft which are already on base leg 
or have a straight-in approach. The right side of the 
display shows a downwards moving timeline with 
assigned touchdown target times for each aircraft. 

The Speech Recognition Log (SRL, Figure 2) 
lists the recognition output of the ABSR system 
(Ohneiser et al. [23]). Each utterance may consist of 
multiple commands with a callsign, a type, and a 
value each. Different colors indicate plausibility of 
the ABSR output with respect to the current situation. 
Green rows in the SRL symbolize plausible 
commands which are directly transferred to the 
AMAN. Blue entries are also plausible, but they are 
rejected due to the current context, whereas yellow 
rows show commands not plausible (e.g. Reduce 
seven zero knots or a direct and a heading command 
for the same callsign). Current commands of the last 
five seconds are highlighted in a bigger font with 
lighter background colors and a frame showing all 
commands corresponding to the last recognized 
callsign. A purple mouse-over highlighting not 
shown here is also possible. This is connected to 
highlighting all corresponding aircraft information in 
the radar, timeline, and on auxiliary screens. 

The plausibility of commands depends on 
predefined value limits that are reasonable in the air 
traffic domain respectively in the approach area of 
aircraft. Those ranges are 150 to 300 knots for speed, 
2000 to 6000 feet respectively 50 to 400 flight levels, 
10 to 360 degrees for headings, and a rate of descent 
between 1000 and 3500 feet per minute. Other 
commands do not have numbers as a value but the 
name of a transition, a waypoint, or a runway in case 
of a cleared ILS command. If the value is reasonable 
with respect to the above mentioned requirements, 
the combination of value, command type, and the 
current aircraft state is investigated. An aircraft flying 
in FL 80 cannot “descend” but only “climb” to 

FL100. Furthermore, an explicit speed change from 
250 to 200 knots would only be possible with a 
“reduce” command. All recognized commands 
violating those and similar rules are marked as 
invalid, i.e. they get a yellow color. 

 

Figure 2: Speech Recognition Log 

The speech recognition log constantly provides 
direct visual feedback to the controller. He 
occasionally may decide to get information about 
how well he/she was recognized by ABSR and have a 
look at the SRL. However, there is no obligation to 
use the output stack, so that actual work attitudes are 
not actively influenced. Nevertheless, the controller’s 
check can lead to modified voice awareness in a 
cognitive response. Even better recognition results 
could be achieved with the speaker articulating more 
clearly and strictly sticking to the ICAO aircraft radio 
regulations. The controller could be motivated by 
getting better automatic decision support when 
“causing” higher recognition rates.  

It needs to be mentioned that the whole 
automatic speech recognition process is running in 
the background and, therefore, does not require any 
additional work of the controller. The radiotelephony 
channel is used anyway without a need for further 
typing, clicking, or other habit changes. A possible 
side effect could be an increased acceptance of 
electronic controller support systems induced by 
more actual and accurate information especially in air 
traffic situations with high-workload. The AMAN 
would dynamically calculate data and suggestions to 
be visualized more close to the real controller’s intent 
in case of low word error rates and predominantly 
correctly recognized controller commands. By 
experiencing benefits and better support of the 



AMAN, the active encouragement to use support 
systems could even lead to an improved controller’s 
behavior and interaction with the speech recognition 
system as well as implicitly more unambiguous 
communication with pilots. 

 

Validation Trials 
The final validation trials were performed from 

February to March 2015 at the Air Traffic Validation 
Center at the DLR premises in Braunschweig, 
Germany with seven male and four female air traffic 
controllers from Dusseldorf, Frankfurt, Munich, 
Vienna and Prague. Pre-Validation trials were 
performed in October 2014 with three controllers 
from Dusseldorf and Prague. These results are 
reported in [16]. 

Research Objectives 
Two main research objectives were addressed by 

the validation trials: First, the functional benefits of 
an AMAN with/without additional input compared to 
the conventional working method using only radar 
screen, R/T and paper strips. Second, the reduction of 
controller workload concerning the electronic flight 
strip documentation when using an additional input 
modality, i.e. mouse input or speech recognition. 

In both cases the first step is the analysis of the 
baseline, i.e. the situation without any controller 
assistant system (Run B). To answer the first 
question, a run with a standard AMAN without 
additional input (Run C, see Table 1) and a run with 
advanced AMAN with additional input created by 
ABSR support (Run D and Run G) are conducted in 
addition to Run C. To answer the second question, 
additional runs with an advanced AMAN, either with 
a manual input device (mouse and keyboard, Run F) 
or with ABSR support (Run D and G) are performed. 
Manual resp. ABSR inputs are used as additional 
information for the AMAN’s planning cycle.  

Experimental Setup 
The experimental setup (see Figure 3) consisted 

of one controller working position and two pseudo 
pilot stations, which were linked and controlled via a 
supervisor station, using the simulation software tool 
NARSIM (NLR ATC research simulator). 
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Figure 3: Experimental Setup 

The controller working position was equipped 
with an advanced radar screen. Flight information 
was handled by paper flight strips, by mouse input 
into the label, or by speech recognition input. 

The pseudo pilot stations were set up to control 
a maximum of ten aircraft each. They were equipped 
with a radar screen to improve the situational 
awareness of the pseudo pilots and a Narsim-specific 
interface to control each single aircraft. The 
communication between controller and pilots was 
established via a voice-over-IP system, which 
simulates the features of the standard radio system.  

Two scenarios were set-up: an emergency and 
runway closure scenario (see Table 1). In the first 
one, a sick passenger is simulated and for the second 
one a temporary runway closure of ten minutes 
length is implemented. To reduce the learning effects, 
the callsigns are changed for each of the runs with the 
same scenario.  

In each scenario we offered different levels of 
support to controllers (see Table 1). The baseline 
configuration (“Baseline 1”) includes a state-of-the-
art radar screen with speed vector information 
(predicted aircraft position in e.g. 90 seconds). In the 
AMAN configuration (“AMAN Only”) we 
additionally offered touchdown sequences, as well as 
four-dimensional trajectories and distance-to-go 



information. The controller had to input additional 
information via mouse or speech recognition to reach 
the highest AMAN functionality. By clicking on an 
aircraft label the controller can input the command 
with its command values, which encompass heading, 
speed or altitude, resp. waypoints for “direct-to” 
commands, controller positions for “handover” 
commands, runways for “cleared ILS” commands or 
other holding and path stretching possibilities. All 
these commands are also recognized by the assistant 
based speech recognizer. 

The six simulation configurations were designed 
as follows: 

Table 1: Overview of the Simulation Runs 

Emergency Scenario Runway Closure Scenario 

Baseline 1 (Run B) 
No AMAN support 
paper flight strips 

Baseline 2 (Run E) 
Mouse Input 
No AMAN support 
Electronic flight strips 

“AMAN only” (Run C) 
AMAN support 
Paper flight strips  

AMAN + mouse (Run F) 
AMAN support with mouse 
input 
Electronic Flight Strips 

AMAN + ABSR (Run D) 
AMAN support with 
ABSR input 
Paper flight strips 

 AMAN + ABSR (Run G) 
AMAN support with ABSR 
input 
Electronic Flight Strips 

Note: Training Run = Run A 

Experimental Procedure  
Each test person participated in six simulation 

runs, as well as a preceding training run, in which the 
controllers familiarized themselves with the different 
simulation configurations. Each simulation run lasted 
approximately 50 minutes. The validation itself took 
place on two half-days with three runs per day. The 
sequence of the simulation runs was counter-
balanced across participants (random order) to avoid 
any sequence effects by the order of simulation runs. 

During each simulation run, every five minutes a 
computer-based instantaneous self-assessment (ISA) 
[24] query was applied. Whenever a configuration 
contained an AMAN, also the assessment of the 
AMAN performance, as described beneath in section 

“AMAN Performance Scale“, followed. After each 
run, computerized post-run questionnaires had to be 
filled out to assess user acceptance, workload (NASA 
TLX [24]) and situational awareness (SART [25]) 
when working with different configurations.  The 
validation ended on the second day with a final 
debriefing.  

Metrics 
During the simulation various data were 

recorded in order to examine metrics. These metrics 
can be assigned to three types of data: 

I. Traffic data  
• Trajectory Conformance 

• Sequence Stability 

II. Radio communication data 
• Word error rate (WER)  

• Command error rate (CmdER)  

• Command recognition rate (ReR)  

A more detailed description of the assessment of 
speech recognizer metrics can be found in Helmke et 
al. [16].  

III. Behavioral data  
• 1. Workload: ISA and NASA TLX 

• 2. User acceptance:  

o AMAN Performance Scale 

o Analysis of electronic flight strip 
data Entry (Mouse Input vs. 
ABSR Input) 

• 3. Situational Awareness: SART 

 

 

 

 

 

 

 



Validation Results 
 In this section we present the results we 

obtained during the final validation trials in February 
and March 2015 as described in section “Validation 
Trials”.  

Traffic Data 
We first present the objective results which we 

got from the measurements in the recorded AMAN 
data base before presenting subjective results from 
controller questionnaires. Although the initial starting 
configuration of the runs B, C and D respectively E, 
F and G were the same, the resulting traffic situation 
were always different. In order to obtain comparable 
results for the quality of the AMAN planning, we 
needed to perform passive shadow mode trials. For 
that we used radar data and controller commands of 
seven controllers that have been recorded during the 
final validation trials in February 2015. Two 
simulation runs were performed for each set of data. 
In both runs the AMAN had to update its planning 
permanently based on the available information.  

In the first of these runs (replays) the AMAN 
only received information about the current radar 
situation and had to update its plan accordingly. This 
was used as a baseline scenario. To evaluate the 
benefits of ABSR for the Arrival Manager we rerun 
the same scenario (replay) again, but this time the 
AMAN also received the recorded commands given 
by the controller as additional input. By doing so we 
were able to receive results that were only based on 
the different amount of information the AMAN had 
and not on different decisions made by the controller. 

Sequence Stability 
We defined the landing sequence as the order in 

which aircraft actually touch down and consider 
subsequences of successive aircraft of the landing 
sequence of size M. For a landing sequence of size N 
we can consider N-M+1subsequences. For each of 
these subsequences the time is determined until the 
AMAN is able to predict the touchdown order 
reliable. In our case a subsequence were considered 
reliable when every aircraft of the subsequence, 
deviates not more than one position from its actual 
touchdown position. We measure the time in seconds 
until the landing of the last airplane in the 

subsequence. This derived measurement gives a hint 
concerning the stability of the AMAN. 

Table 2 shows the results of evaluating the 
planning stability. Depending on the controller and 
the sequence size the improvement varies between 37 
seconds and 4 minutes. On average we have an 
improvement of roughly two minutes considering 
subsequences of 6 aircraft. 

Table 2 : Sequence Stability 

Sequence Size 3 4 5 6 
C1 – with ABSR 801 sec 810 sec 817 sec 741 sec 
C1 – without ABSR 693 sec 696 sec 665 sec 600 sec 
Improvement 108 sec 114 sec 152 sec 141 sec 
C2 – with ABSR 819 sec 825 sec 799 sec 724 sec 
C2 – without ABSR 743 sec 736 sec 716 sec 651 sec 
Improvement 76 sec 89 sec 82 sec 73 sec 
C3 – with ABSR 790 sec 798 sec 801 sec 729 sec 
C3 – without ABSR 752 sec 748 sec 721 sec 617 sec 
Improvement 37 sec 50 sec 80 sec 112 sec 
C4 – with ABSR 804 sec 808 sec 785 sec 706 sec 
C4 – without ABSR 742 sec 721 sec 702 sec 634 sec 
Improvement 62 sec 87 sec 83 sec 72 sec 
C5 – with ABSR 747 sec 699 sec 598 sec 464 sec 
C5 – without ABSR 703 sec 613 sec 505 sec 380 sec 
Improvement 44 sec 86 sec 93 sec 83 sec 
C6 – with ABSR 732 sec 681 sec 696 sec 505 sec 
C6 – without ABSR 693 sec 589 sec 475 sec 260 sec 
Improvement 39 sec 92 sec 221 sec 245 sec 
C7 – with ABSR 802 sec 780 sec 761 sec 680 sec 
C7 – without ABSR 713 sec 699 sec 679 sec 606 sec 
Improvement 88 sec 81 sec 83 sec 74 sec 

Avg. Improvement 65 sec 86 sec 113 sec 114 sec 

 

We compared the effects of “ABSR vs. Without 
ABSR Input” on AMAN sequence stability for the 
different sequence sizes with a pair wise t-test 
analysis. The most significant effects were found for 
the sequence size 3 (t(7) = -6.36, p < .001, d = -2.23)) 
and sequence size 4 (t(7) = -11.96, p < .001, 
d = 1.43)), indicating that ABSR effectively supports 
the AMAN with a better planning functionality than 
without ABSR. Also significant effects for sequence 
size 5 ((t(7) = -5.56, p < .01, d = 1.23)) and sequence 
size 6 ((t(7) = -4.80, p < .01, d = 0.84)) were found.  



Trajectory Conformance 
4D-CARMA determines for each aircraft if the 

radar data is conform to the actual planned trajectory. 
The conformance monitoring considers lateral 
deviations (> 0.5 NM), vertical deviations (> 500 ft.), 
and temporal deviations (> 10 seconds). Based on 
these deviations each aircraft gets the status conform 
or non-conform. We calculate for each aircraft the 
total time the aircraft is in status non-conform 
(NConfT) and how often the status changes from 
conform to non-conform (NConfCnt). This 
measurement indicates how long resp. how often the 
internal picture of the controller differs from that of 
the machine. 

Table 3 shows the improved conformance 
between the planned trajectory and the actual radar 
data. In runs without ABSR the overall percentage of 
NonConfT varies between 10% and 18%, whereas in 
runs with ABSR it only varies in between 3% and 
10%. Also the number of times an aircraft switches in 
the state non-conform has been reduced significantly. 
This was also confirmed in another pair wise t-test 
analysis comparing the total time of all aircraft 
(NConfT) in status non-conform (t(7) = 8.94,  
p < .001, d = 3.43)) and the number of status changes 
from conform to non-conform (t(7) = 10.95, p < .001, 
d = 3.58)). 

Table 3: Trajectory Conformance 

  

 

NConfT 
(all AC) 

NConfT 
% 

NConfCnt-
Average 

C1 
with ABSR 601 sec 4.2% 2 
without ABSR 2545 sec 17.9% 10 

C2 
with ABSR 600 sec 4.1% 3 
without ABSR 2255 sec 15.4% 8 

C3 
with ABSR 745 sec 5.1% 3 
without ABSR 2364 sec 16.2% 9 

C4 
with ABSR 603 sec 4.1% 2 
without ABSR 1901 sec 13.0% 7 

C5 
with ABSR 560 sec 4.1% 2 
without ABSR 2355 sec 17.0% 9 

C6 
with ABSR 1803 sec 9.9% 6 
without ABSR 2624 sec 14.4% 11 

C7 
with ABSR 561 sec 3.7% 2 
without ABSR 1532 sec 10.0% 6 

 

Radio Communication Data 
ASR systems generally use the Word Error Rate 

(WER) metric for evaluation. This metric is defined 
as the distance between the recognized word 
sequence and the sequence of words which were 
actually spoken, referred to as the gold standard (see 
pp. 362-364 in [26]). WER is defined as a derivation 
of Levenshtein distance [27]: 

 
(1) 

 

Here, ins(s) is the number of word insertions 
(words never spoken), del(s) is the number of 
deletions (words missed by ASR), sub(s) is the 
number of substituted words, and W(s) is the number 
of words actually said. In ATM, however, the WER 
is not descriptive enough as metric. One would rather 
prefer a metric assessing the rate of correctly 
recognized concepts. It is not important that ASR 
correctly recognizes “Good morning Air France one 
two tree descend level one three zero”, but that the 
concept “AFR123 DESCEND FL130” is correctly 
extracted. The command error rate (CER) quantifies 
this metric. In Eq. (1) ins(s), therefore, designs the 
number of commands insertions.  

We distinguish between (1) recognition rate, 
which measure the number of commands correctly 
recognized and rejected by plausibility checks, (2) 
error, which considers the number of commands 
wrongly recognized and not rejected and (3) the 
rejection rate, which considers the number of 
commands being rejected independent of correctly or 
wrongly rejected. Table 4 summarizes the achieved 
results during the trials. 

Table 4: Rates Observed During Trials  

Recognition 
Rate 

Rejection 
Rate 

Error 
Rate 

91.6% 8.4% 3.0% 
 

When the controller gives additional information 
to the pilot (e.g. expect delays due to runway closure, 
you are number five in sequence, runway reopen at 8 
hundred, reduce speed two three zero knots), which 
deviates from phraseology the speech recognizer 



often recognizes more commands than really given 
by the controller, i.e. the number ins(s) in Eq. (1) is 
high. This is the reason why the sum of the 
percentages is greater than 100%. 

Depending on the accepted rejection rate of the 
speech recognizer we got command error rates 
between 2% and 5% resulting in command 
recognition rates between 90% and 95%. These 
recognition rates were, however, only achieved with 
assistant based speech recognition, i.e. an AMAN 
dynamically generates context information to 
increase the recognition rate. Without context 
generation the recognition rate was between 50 and 
80%. Since, the main focus of our data analysis in 
this paper lies on behavioral data of air traffic 
controllers we refer to a more thorough speech 
recognizer related data analysis in [16]. 

Behavioural Data 
In this part of the result section we present 

various subjective data that we assessed of the air 
traffic controllers. 

AMAN Performance Scale 
Tailored to one of the validation objectives the 

AMAN Performance Scale was developed to 
continuously evaluate the subjective opinion on the 
AMAN performance and was thus only used in the 
configurations with AMAN support. It is a five point 
scale (see Figure 4 below) ranging from “strongly 
agree” (indicating 100% conformity or grade “A”) to 
“strongly disagree” (0% conformity or grade “E”) . 
The controllers were asked every five minutes during 
the runs to rate subsequently their degree of 
agreement with the AMAN sequence and the AMAN 
trajectory by tapping on either the grade or 
description which suited best.  

 

Figure 4: AMAN Performance Scale 

 

AMAN Sequence 
A comparison of the results for the support 

levels AMAN and AMAN with ABSR showed a 
higher agreement with the proposed sequence in the 
condition AMAN with ABSR (see Figure 5 below). 
Note, that a lower score (e.g. grade A = 1, grade B = 
2) represents a higher agreement. Interestingly, 
AMAN planning that was based solely on radar data 
("Run C") was rated better than when the ATCO 
entered flight data ("Run F") with the mouse. Here 
the AMAN at least obtained additional information, 
which had to be entered by mouse suggesting an 
improved AMAN planning. Although the descriptive 
analysis reveals better ratings for an AMAN 
sequence updated with ABSR when compared to 
AMAN without any support multiple pair wise t-tests 
did not reveal significant effects of an improved 
AMAN Sequence. 

 

Figure 5: AMAN Sequence 

 

AMAN Trajectory 
The ATCOs rated also the trajectory 

conformance by comparing the AMAN trajectories 
with their planned trajectories as follows: "Run D" 
was rated best (t(58) = 2.27, p < .05, d = 0.41)), 
indicating that an ABSR support increased the level 
of consistency between AMAN and ATCO plan (see 
Figure 6). At worst, the trajectory conformance for 
"Run C" was rated, in which the AMAN calculates its 
trajectory only on the basis of radar data. Pairwise 
t-tests did also reveal significant effects for the 
support levels AMAN with mouse (Run F, 
(t(58) = 2.27, p < .05, d = 0.41)) and AMAN with 
ABSR (Run D (t(58) = 2.27, p < .05, d = 0.41) , Run 
G (t(58) = 2.02, p < .05, d = 0.33)) when contrasted 
with the baseline run C. 



 

Figure 6: AMAN Trajectory 

 

Workload 
The workload of the controllers was measured 

with the Instantaneous self-assessment (ISA) method 
and NASA TLX. ISA is an on-line subjective 
measure of workload, i.e. the workload is recorded 
every five minutes during the simulation and not 
afterwards. It is a five point scale which ranges from 
“1= underutilized” to “5 = excessive” with 
intermediate rating points. The results as depicted in 
Figure 7 show that the workload increased when the 
controllers had to input the additional information via 
mouse (Run E and F). The workload was again 
significantly reduced to the normal baseline level 
when this input was made by the speech recognizer 
(Run G).  

 

Figure 7: ISA workload 

This could be confirmed by post-hoc pair-wise t-
tests (Run F vs. Run G (t(73) = 4.98, p < .001, d = 
0.73 and Run E vs. Run G, t(81) = 3.47, p < .001, d = 
0.45)) which revealed highly significant effects, i.e.  
ABSR inputs are producing significantly less 

workload than when using a mouse as an additional 
input modality. Interestingly, the level of perceived 
workload between the conventional method of 
operation (paper flight strips and no AMAN, ISA 
Score = 2.25) and new method of operation (AMAN-
ABSR and use of electronic flight strips, ISA 
Score = 2.31) is nearly the same and thus negligible. 

Post-run assessments of workload were carried 
out with the NASA TLX. The results in Figure 8 
represent the overall workload score assessed for 
each simulation run. The analysis of the NASA TLX 
showed the lowest workload score for the baseline 
(Run B) which corresponds well with the ISA results 
(see Figure 7). Participants evaluated Run E (mouse 
input, electronic flight strips, no AMAN support) to 
be the highest although the difference failed to reach 
significance after we calculated analysis of variance 
(ANOVAs). A pairwise t-test however showed a 
significant difference between run B and run E 
(baseline vs. mouse-input, (t(10) = -5.06, p < .05, d = 
0.78)) but since the scenario types (emergency vs 
runway closure) were different in terms of traffic 
complexity both runs, the comparability is difficult.  

 

Figure 8: NASA TLX workload scores 

 

Situational Awareness 
The assessment of the air traffic controllers’ 

situational awareness in dependence on the 
configuration was carried out with the 3D SART. 
This is a narrowed down version of SART covering 
three dimensions of situational awareness (demand 
and supply of attentional resources and understanding 
of situation). The 3D SART results revealed (see 
Figure 9), that situational awareness was evaluated as 
to be the lowest in Run E (electronic flight strips with 



mouse input, without AMAN without speech) and 
highest in Run G (with electronic flight strips with 
AMAN, with voice recognition). However, 
inferential statistics did not show significant effects 
of the configuration on situational awareness. 

 

Figure 9: 3D SART situational awareness results 

 
General User Acceptance 

A tailored questionnaire was developed in order 
to assess the user acceptance. One important aspect 
of the user acceptance assessment was the ATCOs 
opinion on the effectiveness of support of the various 
workstation configurations. The results show that the 
speech recognizer (Run D and G) provides a 
significantly higher support, with configuration 
“AMAN + ABSR” and electronic flight strips yielded 
the highest ranking. A highly significant effect was 
found in the comparison of Run E vs. Run G 
(t(10) = 5.16, p < .001, d = 2.30). The configurations 
with mouse input received the lowest acceptance 
scores. 

 

Figure 10: Post-Run Questionnaire Assessing 
Effectiveness of Controller Support Dependent of 

Configuration 

In both runs with paper flight strips (Run C and 
D) as well as in runs with electronic flight strips (Run 
E, F and G), the speech recognizer supported the 
ATCOs significantly more effective in their work 
than other configuration did.  

 

Electronic Flight Strips Data Entry 
In this section we compare how often the real 

command given via voice to the pilots was stored in 
the data base. It was stored in the data base, if ABSR 
recognizes it correctly (and was not rejected) and in 
the case we use mouse input, how often the controller 
inputs the given (spoken) command also via mouse 
into the label. Table 5 shows the results. 

 Table 5: Accuracy of mouse and ABSR input 

 Speech Mouse 
Total given commands 189.2 160.2 
Rate of correct commands 91.9% 77.6% 
ErrorRate 2.2% 10.7% 
Rejection rate 8.1% 22.5% 

 

We were surprised that only 77.6% of the given 
commands were inputted also via mouse into the 
label. This is even more surprising because we did 
not require inputting all given commands. If the 
controller gives an ILS clearance together with a 
heading or with a descend command only the ILS 
clearance was required. If the controller repeats a 
clearance we of course only expected one mouse 
input and so on. Therefore, the number of total given 
commands (average per scenario) is much smaller 
when mouse is used. The controller does not only 
forget to input a command, but also 10.7% of these 
commands were never given to the pilot.  

The used HMI for mouse input was not 
optimized for that task and we also did not consider 
the effect, that the controller gives a command (e.g. 
heading 320), the pilot reads back a slightly different 
command (e.g. heading 310) and the controller did 
not correct, but just inputs the readback to avoid 
further frequency usage. Nevertheless the measured 
effect is significant and requires further analyzes. 
With assistant based speech recognition we now have 
the tools to really analyze these effects with low 
effort. 



Conclusions and Outlook 
With our validation setup consisting of six 

simulation runs for eleven different air traffic 
controllers, we assessed both, the workload reduction 
by means of ABSR as well as the increased support 
for the controller. 

Results of this study revealed that ABSR 
positively influences the controller workload, 
especially in terms of electronic flight strip 
documentation. Another outcome was the 
functionality benefits of an ABSR based AMAN in 
terms of a higher degree of trajectory conformance 
and sequence stability when compared to the 
performance of an AMAN merely based on radar 
updates.   

In summary, the results of this study point out 
that ABSR supports the controller better and more 
effectively than without any sensor or even when 
updated with mouse. Results regarding the latter 
showed that with mouse input roughly 78% of the 
given commands were correct, whereas with ABSR 
this was true in 92% of the cases.  

Another interesting finding of the study was, 
that the analysis of the workload measures (ISA and 
NASA TLX) revealed that even with a more complex 
traffic scenario like a runway closure the amount of 
perceived workload was almost the same (see   
Figure 7 and Figure 8) when the controller worked 
conventionally (paper flight strips, R/T and situation 
data display). This indicates that the new working 
method based on ABSR is possibly paving the way 
for the “digital revolution” in ATM.  
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