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MALORCA 

 ASR for Air Traffic Control 

• Voice communication between controllers and pilots 

• Limited vocabulary, constrained grammar, English 

• Assistant Based Speech Recognition (ABSR) 
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MALORCA 

 ASR for Air Traffic Control 

• Voice communication between controllers and pilots 

• Limited vocabulary, constrained grammar, English 

• Assistant Based Speech Recognition (ABSR) 

 Adapt ASR systems to new ATC environments 

• Continuously in semi/un-supervised manner 

• Utilize increasing amounts of (untranscribed) data 

• Exploit local constraints (accents, acoustic conditions) 

• Data from other modalities such as radar 
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 Build and adapt ASR models for Vienna approach 

 Limited amount of transcribed data 
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 Utilize out of domain data 

 Semi-supervised learning to improve ASR models 

 Data selection methods  
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 Utilize ATC concepts and command semantics 

 Word and concept level metrics 
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Datasets 

 Recorded from Vienna approach 

• Segmented, 8 kHz, no pilot readback 

• Partly annotated with text and command transcriptions 

 Out of domain data for training 
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Dictionary and Acoustic Modeling 

 All in-domain words (e.g. airports, waypoints) added: 
No OOV words 

 

 DNN/HMM acoustic model  

• In-domain data (VDev1): DNN-DEV1 

• In-domain (VDev1) + Out-of-domain (MEGA): DNN-BASE 

 

 Adapt DNN-BASE to Vienna approach 
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Dictionary and Acoustic Modeling 

 Adapt DNN-BASE to Vienna approach 

• Reinitialize last layer of DNN-BASE 
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Dictionary and Acoustic Modeling 

 Adapt DNN-BASE to Vienna approach 

• Reinitialize last layer of DNN-BASE 

• Retrain with VDev1: DNN-SA 
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Language Modeling 

 Limited vocabulary and standard phraseology – But 
deviations! 

 

 A rule based Context Free Grammar to model 
phraseology ?  

 N-gram statistical language model used for ASR  

 CFG used for command extraction from text hypothesis 

  

                                             +                    : ASR-SA 
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Concept and Command Extraction 

hello lufthansa eight echo kilo start reduce  

your speed to two two zero knots 

 

Concepts 
• DLH8EK (lufthansa eight echo kilo - callsign) 

• REDUCE (reduce - command word) 

• 220 (two two zero - speed attribute) 

 
       

 

 

Command: DLH8EK REDUCE 220 

hello <callsign> <airline> lufthansa </airline> <flightnumber> eight echo kilo 
</flightnumber> </callsign> start <commands> <command="reduce"> reduce your 

speed to <speed> two two zero </speed> knots </command> </commands> 

INTERSPEECH 2017 



Semi-supervised learning 

 Exploit untranscribed data (VDev2) to improve ASR 

• Obtain additional training resources 
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Semi-supervised learning 

 Exploit untranscribed data (VDev2) to improve ASR 

• Obtain additional training resources 

 Transcript generation using ASR-SA 

• Generate text and command hypotheses for VDev2  
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Semi-supervised learning 

 Exploit untranscribed data (VDev2) to improve ASR 

• Obtain additional training resources 

 Transcript generation using ASR-SA 

• Generate text and command hypotheses for VDev2  

 Data selection 

• Assign confidence scores to ASR outputs  
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Semi-supervised learning 

 Exploit untranscribed data (VDev2) to improve ASR 

• Obtain additional training resources 

 Transcript generation using ASR-SA 

• Generate text and command hypotheses for VDev2  

 Data selection 

• Assign confidence scores to ASR outputs  

 Semi-supervised training 
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Data selection 

 Utterance selection 

 Word confidence 

• Logistic regression on word-lattice based features 

• Average word confidence of the utterance 

• Subset VDev2-W using a confidence threshold (0.95) 

 Concept confidence 

• Basic first-step measure 

• Exclude utterances with NO_CALLSIGN, NO_CONCEPT  

• Subset VDev2-C 

 No data selection: baseline 
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Semi-supervised training 

 Combine VDev1 with subset VDev2-W or VDev2-C 
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Semi-supervised training 

 Combine VDev1 with subset VDev2-W or VDev2-C 

 Adapt only AM 
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Semi-supervised training 

 Combine VDev1 with subset VDev2-W or VDev2-C 

 Adapt only LM 
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Semi-supervised training 

 Combine VDev1 with subset VDev2-W or VDev2-C 

 Adapt both AM and LM 

 ASR-SSA system 
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Experiments 

 Evaluation measures 

• Word Error Rate (WER)  

• Concept Error Rate (CER) – stricter measure 
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Semi-supervised learning results 
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Semi-supervised learning results 

 WER and CER 
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Semi-supervised learning results 

 Supervised adaptation 
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Semi-supervised learning results 

 AM, LM, AM+LM adaptation 
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Semi-supervised learning results 

 No data selection 

INTERSPEECH 2017 



Semi-supervised learning results 

 Word confidence: better WER 
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Semi-supervised learning results 

 Concept confidence: better CER 
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Summary 

 Domain specific ASR models for Vienna approach  

• 150 hr out-domain data and 5 hr of in-domain data 

 Data selection methods 

• Utilize 9 hr untranscribed data 

 Utilize OOD data + data selection 

• 23.5% relative WER improvement (using word confidence) 

• 7% relative CER improvement (using concept confidence) 

 Future work 

• Improved semantic confidence measures  

• Additional data modalities 
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