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Abstract

The use of prior situational/contextual knowledge about a given
task can significantly improve Automatic Speech Recognition
(ASR) performance. This is typically done through adaptation
of acoustic or language models if data is available, or using
knowledge-based rescoring. The main adaptation techniques,
however, are either domain-specific, which makes them inad-
equate for other tasks, or static and offline, and therefore can-
not deal with dynamic knowledge. To circumvent this problem,
we propose a real-time system which dynamically integrates
situational context into ASR. The context integration is done
either post-recognition, in which case a weighted Levenshtein
distance between the ASR hypotheses and the context informa-
tion, based on the ASR confidence scores, is proposed to extract
the most likely sequence of spoken words;, or pre-recognition,
where the search space is adjusted to the new situational knowl-
edge through adaptation of the finite state machine modeling
the spoken language. Experiments conducted on 3 hours of Air
Traffic Control (ATC) data achieved a reduction of the Com-
mand Error Rate (CmdER), which is used as evaluation metric
in the ATC domain, by a factor of 4 compared to using no con-
textual knowledge.
Index Terms: speech recognition, situational context, Leven-
shtein distance

1. Introduction
Automatic speech recognition is a cornerstone of innovation
in many technology applications due to the large demand
for voice-enabled systems. Although ASR performance im-
proved significantly over the last decade, it is far from being
a solved problem, in particular for large vocabulary scenar-
ios. Limited vocabulary (closed domain) applications, how-
ever, are deployed more successfully. Moreover, use of situ-
ational/contextual information about a task, generally referred
to as context, can significantly improve performance [1]. Early
usage of context goes back to Young et al.’s works [2, 3], who
used sets of contextual constraints to generate several grammars
for different contexts. Fügen et al. [4] used a dialogue-based
context to update a Recursive Transition Network (RTN) to im-
prove ASR quality of a dialogue system. Everitt et al. [5] pro-
posed a dialogue system for gyms, which, based on the exercise
routine, would switch its ASR component between pre-existing
grammars tailored to different sports equipments.
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The ATC domain is a prime example of heavy use of con-
text. Air Traffic Controllers (ATCOs) manage a given airspace
by issuing verbal commands to pilots for sequencing and main-
taining aircraft separation. They rely on situational knowledge
acquired through multiple modalities, including radar derived
aircraft state vectors (comprising position, speed, altitude, etc.),
flight plans and a history of previous commands.

The same information can also be used to improve ASR per-
formance. Shore et al. [6] integrated context information in the
ATC domain via lattice rescoring, whereas Schmidt et al. [7]
proposed a dynamic context-based adaptation of the recogni-
tion network on the finite-state-machine level. The former was
a limited proof of concept that took more than 30s per utter-
ance. The latter requires ≈ 7s for an optimal integration of
the context, referred to as dynamic-slow in [7]. Given that new
context information becomes available with each radar update
cycle every 5 seconds, this is still very slow. Moreover, both
works are based on grammars that model the standard commu-
nication phraseology of the International Civil Aviation Organi-
zation (ICAO) [8]. However, analysis of ATC communication
has shown that ≥ 25% of issued commands do not follow this
phraseology. These deviations vary among ATCOs, airports and
countries, making it difficult to model in the grammar.

We propose a new approach based on N-gram Lan-
guage Models (LM) to automatically capture these variations.
The proposed approach performs the context integration post-
recognition, using a modified weighted Levenshtein distance
between the ASR hypothesis and the context information, us-
ing the ASR confidence scores as weights. This is in contrast to
the previously proposed approach [7], which adjusts the search
space to new situational knowledge through adaptation of the
finite state machine that models the spoken language.

Proceeding, we introduce the ATC task as well as a domain-
specific ASR system in Section 2. Section 3 details how to dy-
namically utilize context information to improve ASR perfor-
mance and how it can be applied to the ATC domain. Section 4
evaluates the proposed approach in comparison to a standard
ASR system and to [7]. Finally, we conclude in Section 5.

2. ASR in Air Traffic Control
2.1. AcListant® System

The task of air traffic control aims at maintaining the safe, or-
derly and expeditious flow of air traffic. ATCOs apply strict sep-
aration rules to direct aircraft safely and efficiently, both in their
respective airspace sector and on the ground. Since controllers
have an incredibly big responsibility and can face high work-
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Figure 1: Schematic view of information flow in AcListant®.

loads in busy sectors, different planning systems have been pro-
posed to assist them in managing the airspace. These assistance
systems suggest e.g. an optimal sequence for the controller to
implement via verbal radio communication with the aircraft pi-
lots. These systems, however, do not know the controller’s ac-
tual commands and thus react slowly to deviations of the con-
troller from the system’s plan or require the controller to enter
the issued commands via mouse/keyboard, indirectly increasing
the workload that they were designed to reduce. To alleviate this
problem, we proposed an Active Listening Assistance (AcLis-
tant®) system [9, 10] which extends the planner to include a
background ASR system, ideally replacing the mouse/keyboard
feedback. Conversely, ASR can also benefit from the context
information used by the assistant system [11] to improve its per-
formance. Figure 1 shows the information flow in AcListant®.

2.2. Dynamic Context Information

Similar to ATCOs, an assistance system bases its proposed com-
mand sequence on the state of a given airspace sector and its
history. This state is primarily derived from radar information
about the airspace as well as aviation domain knowledge. The
planning system forms a search space of all physically possible
commands in the current airspace state from which to extract
advisory commands, i.e. a sequence of commands to optimize a
set of ATC criteria. This search space represents our dynamic
context, and can be seen as a command-level search space for
the ASR system. Typical dynamic context information gener-
ated by the AcListant® system contains a few hundred com-
mands in the standardized ICAO phraseology format [8] (see
example Table 1), comprising an aircraft callsign (e.g. DLH23B
∼= Lufthansa two three bravo) followed by a goal action to ex-
ecute and a goal value to achieve (e.g. REDUCE 250 ∼= reduce
speed two five zero knots). Section 3 will introduce how such
context information can be used to improve ASR performance.

3. Dynamic Context-based ASR
This section shows how abstract context information can be suc-
cessfully used to improve ASR performance in real-time. With-
out loss of generality, the proposed framework is illustrated

Callsign Command Action Value
DLH23B REDUCE 250
AFR2A TURN RIGHT HEADING 60

BER9000 RATE OF DESCENT 2000
KLM8739 DESCEND 100

Table 1: Excerpt from dynamic context information generated
by AcListant®. It shows an ICAO abstraction of four different
actions that can be issued by the controller to an aircraft.
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Figure 2: Diagram illustrating the proposed post-recognition in-
tegration of context information into an ASR system.

through examples from the ATC domain. Figure 2 shows the
proposed system architecture for a post-recognition integration
of the context. The following sections introduce its different
components in more details.

3.1. From Grammar to N-gram LM

We have proposed in [7] to integrate context information into
ASR by dynamically updating the recognition network of a
grammar-based ASR. Context information is used to update the
terminal values of the relevant grammar actions/rules. The up-
dated grammar is converted to a finite-state machine (FSM) in
the AT&T format [12], and a new recognition network is cre-
ated accordingly. However, ATC data has shown that≥ 25% of
the issued commands do not follow the standard ICAO phrase-
ology [8]. These deviations vary between ATCOs, airports, etc.,
making it difficult to always create a suitable grammar, resulting
in a strong decrease in ASR performance. As an alternative to
this, we investigate the usage of N-gram language models as a
straightforward way to automatically and cheaply capture these
variations. In particular, a trigram LM is trained on a combina-
tion of data from ATC simulations and on synthetic data gener-
ated from the grammar.

3.2. Sequence Labeling for Semantic Concept Extraction

The main benefit of using Context-Free Grammars (CFG) for
structured tasks such as ATC is their capability to automatically
extract semantic concepts relevant to the task (e.g. callsign,
command action and value, etc). This is achieved by embed-
ding XML-tags in the grammar itself. These tags are mapped
to empty acoustic states and therefore can be integrated into an
ASR system without affecting its performance.

While N-gram LMs are easy to train and, unlike handwrit-
ten grammars, do not require any manual inspection of data,
they cannot automatically extract relevant semantic concepts.
We propose to solve this problem by using sequence labeling.
The labeller takes the raw ASR hypotheses as input and auto-
matically detects and extracts the semantic concepts relevant
to the target task. In the ATC domain for instance, the hypoth-
esis “air france two alpha hello turn right heading six zero
degrees” is mapped to “<callsign> air france two alpha
</callsign> hello <command=turn_heading> turn
<direction> right </direction> heading <degree>
six zero </degree> degrees </command>”. We have inves-
tigated two different sequence labellers, namely a Conditional
Random Field (CRF)-based tagger [13] and a CFG-based token
tagger similar to the one used in [6, 7]. Both systems achieved
similar performance, extracting ≈ 90% of semantic concepts.



3.3. Context-to-Word Mapping

Although context information can significantly improve ASR
performance, its integration is not straightforward. This is
mainly due to two reasons: 1) The information is partial and
can only be used to modify the probability of a few words in the
vocabulary, generally those with semantic relevance to the task.
2) The context is not necessarily represented as a fully realized
natural language phrase. In the case of the ATC domain (see ex-
amples in Table 1), a mapping from context to all possible word
sequences is necessary. For instance, the callsign BER9000
contains the ICAO symbol BER, which can be spoken as berlin,
berlin air or air berlin, and the flight number 9000, which, ac-
cording to official phraseology, should be spoken as nine zero
zero zero, but is often spoken as nine triple zero or nine thou-
sand. The combination of these different realizations already
leads to nine possible verbalizations that can be chosen by the
controller to address this particular aircraft.

Our approach maps all abstracted callsigns and commands
in a given context to their sentence realizations. The context-
to-word mappings of callsigns are generated dynamically for
the given context. Command actions (e.g. REDUCE, DESCEND,
etc.) do not change over time and thus are captured directly by
the language model. The resulting set of word sequences is used
to improve ASR performance as explained in the next section.

3.4. Weighted Levenshtein Distance

Integration of domain knowledge into a language model is
generally done through adaptation, which requires a sufficient
amount of data to estimate reliable statistics. Adaptation ap-
proaches are usually offline techniques and can be slow, which
makes them unsuitable for a real-time system. Capturing long
range dependencies (e.g. a callsign can be seven words long)
during adaptation requires long history N-grams, which in turn
requires even larger amounts of data. Unfortunately, dynamic
context information is unsuitable for providing such data, as it
contains only crucial information for a specific task, but lacks
knowledge of the possible ways in which it might be realized in
natural language.

We propose to overcome this problem using a Weighted
Levenshtein Distance (WLD). We take the set of context word
sequences (resulting from the context-to-word mapping) and
treat it as the search space representing our ground truth, i.e.
all commands the ATCO might speak in the current situation.
Given the ASR hypothesis of a speech input, we calculate
the WLD between that hypothesis and every context word se-
quence. The sequence that minimizes the WLD is extracted as
the most likely spoken utterance. The rest of this section intro-
duces the mathematical formulation of this approach.

Formally, standard Levenshtein Distance (LD) [14] be-
tween two sequences of words A and C is given by

LD(A,C) = argmin
p
{α · s(p) + β · i(p) + γ · d(p)} (1)

where p is a sequence of operations from {sub, ins, del, none}
which change the sequence A into C, whereas s is the number
of substitutions, i insertions and d deletions in p. α, β and γ are
fixed weights (generally =1), or operation costs. In ASR, LD is
typically used as an evaluation metric to calculate the edit dis-
tance between a hypothesis A and a given unique transcription
C. LD assumes a uniform probability distribution for all words
in A and C.

In this work, however, we are interested in choosing the
most likely word sequence taken from a set of context infor-
mation verbalizations (interpreted as potential ground truths),

given an ASR hypothesis. In other words, our task is to ex-
tract the context hypothesis C closest to the ASR hypothesis A.
In neither of these do the words have uniform weights. The
ASR hypothesis contains confidence scores, which reflect the
certainty of the recognition for each single word, formalized
as probabilities. The context information provides probabilities
for each callsign-command combination, which are applied to
their respective verbalizations.

Let {wj
a}j and {wk

c }k be the probability weights associated
with the words in A and C respectively, then WLD is given by

WLD(A,C)= argmin
p
{α·S(p) + β ·I(p) + γ ·D(p)} (2)

where

S(p)=
∑
s∈p

wjs
a ·(1− wks

c ), I(p)=
∑
i∈p

wji
a and D(p)=

∑
d∈p

(1− wkd
c )

In our case, wjs
a ·(1 − wks

c ) is the cost of replacing an (ASR)
word with a confidence wjs

a by a (context) word of probability
wks

c . Similarly, the confidence score wji
a is used as the cost for

the corresponding (ASR) word being inserted, whereas 1−wkd
c

is the cost of the (context) word being deleted. The integration
of confidence scores aims at penalizing the inclusion of words
where the system is less confident, as well as context hypothe-
ses with a low probability of occurrence. Hence, the proposed
approach does neither simply reduce the search space as done
by [7] nor re-weight hypotheses for rescoring [6], but actively
forces the system to choose the most likely hypothesis through
a combination of ASR confidence and contextual likelihood of
occurrence. This strategy relies on high quality context infor-
mation. In the case of our ATC task, context accuracy is≥ 99%.

3.5. WLD applied to ASR for ATC

Let A = {Acs, {Acs
com}com} be the semantics extracted from

the ASR hypothesis using the sequence labeling system de-
scribed in subsection 3.2. We assume that each hypothesis con-
tains a single callsign Acs in addition to one or multiple com-
mand goals to achieve {Acs

com}com.
The semantics considered here match the type of infor-

mation that is dynamically updated in the context informa-
tion (e.g. speed value, flight level value, etc). Similarly, let
C = ∪cs{(Ccs, {Ccs

com}com)} be the set of all possible context-
based ground truths resulting from the context-to-word map-
ping of subsection 3.3. This set consists of all callsigns in
the context and the command actions applicable to them. The
context-based hypothesis is extracted according to

H = argmin
C∈C

{WLD(A,C)} (3)

= argmin
C∈C

{WLD(Acs, Ccs)+
∑

Ak∈{Acs
com}

argmin
Cj∈{Ccs

com}
WLD(Ak, Cj)}

The resulting context-based hypothesis H =
{Hcs, {Hcs

com}com} is then used to update the ASR hy-
pothesis by “correcting” the misrecognized information in
{Acs, {Acs

com}com}. The extension of our approach to the
N-best hypotheses case is straightforward by simply applying
the same method for all N hypotheses separately, and then
extracting the context-based hypothesis with the minimum
WLD.

4. Experiments and Results
We evaluate the proposed approach using recordings of actual
ATCOs running simulations of different scenarios for the ap-
proach of Düsseldorf airport. They were performed in October



Table 4: ASR results for the three controllers using different ASR systems with and without context information
ASR Systems Czech Male ATCO German Male ATCO German Female ATCO

WER ConER CmdER CmdER WER ConER CmdER CmdER WER ConER CmdER CmdER
Grammar 7.89 12.28 22.16 19.13 3.49 8.99 16.74 13.11 6.46 10.34 18.13 15.23

Trigram LM 6.53 9.59 19.03 17.02 2.21 6.03 11.86 9.12 4.89 7.81 14.49 10.09
Grammar+Context 7.32 4.82 8.33 7.87 3.16 4.36 7.44 7.26 5.79 4.18 7.25 7.07

Trigram LM+Context 6.07 2.91 5.08 3.39 2.08 3.42 6.02 4.83 4.78 2.96 5.39 3.47

Controllers German German Czech
Male Female Male

Number of Commands 835 1323 960
Total Duration (min) 55 96 72

Avg. Time/Command (s) 3.95 4.35 4.54

Table 2: Recording statistics for the three controllers

2014 at the German Aerospace Center in Braunschweig as part
of validation trials for the AcListant® system. The aim was to
show that its planning and ASR components improve each other
when combined. The data consists of recordings of three con-
trollers, a male German, a female German and a male Czech
native speaker. All commands were issued in English. Each
controller ran a total of 7 simulations for different scenarios.
Table 2 presents recording statistics for the different controllers.

The dynamic context information is updated every 5 sec-
onds by the assistant system [11]. It contains on average 359
possible commands, in contrast to the 239 used in [7]. This
50% increase improved the probability of containing the actual
spoken commands in the context from 96% to 99%. ASR was
performed using the KALDI software [15] and the ASR confi-
dence scores were generated based on the Minimum Bayesian
Risk (MBR) decoding approach [16]. The acoustic model is a
GMM-based triphone model trained on 20 hours of ATC data.
The data is a combination of the freely available Air Traffic
Control Simulation Speech Corpus (ATCOSIM) [17] and pre-
viously collected data from past simulations. The combined
corpus contains data from 21 controllers who are either na-
tive German, Swiss or French. 80% of them are male. The
ATC-grammar used in these experiments is an extension of the
one proposed in [7]. It implements the standard ATC phraseol-
ogy [8] in addition to most common deviations observed in the
training data. The LM, on the other hand, is a trigram model
trained on a combination of the aforementioned ATC corpus
and synthetic data generated from the grammar. For evaluation,
in addition to the commonly used Word Error Rate (WER), the
ATC-specific evaluation metrics Concept Error Rate (ConER)
and Command Error Rate (CmdER) are used. ConER is re-
stricted to the ATC-relevant semantic concepts of a given utter-
ance, which are extracted using the sequence labeling approach
(subsection 3.2). A concept can be either a callsign or a com-
mand, e.g. REDUCE 250. The CmdER metric requires the en-
tire sequence of concepts to be correct. In the case where the
sequence labeling system fails in extracting ATC-concepts, it
returns NO CALLSIGN or NO COMMAND. These cases are
counted as misrecognitions (deletions), even though they have
no impact on the planning system since they do not provide any
information. Therefore, we also report the CmdER after exclud-
ing these utterances (noted CmdER) to estimate the misrecog-
nition rate which negatively affects the planning system. When
the ground truth contains no given command we have counted
this in CmdER as an error as well.

Table 4 reports the ASR results for the three ATCOs using
different ASR systems with and without context information.
The approach Grammar+Context is the one proposed in [7].

German German Czech
Male Female Male

Run-Time (s) Rt Ct Rt Ct Rt Ct

Grammar+Context 2.05 4.88 1.54 4.90 1.61 4.82
LM+Context 2.73 0.23 2.05 0.22 1.76 0.22

Table 3: Real-time performance: average recognition time (Rt)
per command and context integration time (Ct), both in seconds

The first conclusion we can draw from these results is that
the trigram LM clearly outperforms the grammar-based system
with and without context information, despite the grammar hav-
ing been extended specifically for the training data to include
new rules beyond the standard ATC phraseology. The trigram
LM automatically captures these variations and assigns proba-
bilities of occurrence reflecting their importance, contrary to the
grammar which treats all rules and words as equally likely. We
can also conclude from these results that context information
strongly improves the ATC-related metrics (ConER, CmdER
and CmdER), whereas it only slightly improves the WER of ei-
ther system. This is mainly due to the context information being
dense and partial, i.e. it can only be used to improve the prob-
ability of occurrence of specific words in the vocabulary (the
words which are ATC-relevant). These words, however, form
only a small portion of the vocabulary (digits, letters, airlines,
etc) leading to this slight improvement of the WER.

Table 4 also shows that the AcListant® system is robust and
stable, i.e. the ConER and CmdER of the ASR+Context systems
do not change much between speakers, despite not having been
trained on a Czech accent and having seen only a small amount
of female audio recordings. This robustness also covers varia-
tions in speed of issuing commands. This becomes clear when
we look at Table 2, which shows that the male German con-
troller issues commands a lot faster than the other controllers,
while CmdER increases by only ≈ 1.4%.

Table 3 shows that the proposed approach integrates the
context information a lot faster (Ct = 0.2s) than the gram-
mar+context approach (Ct = 4.8s) by [7]. The latter is slow
for a real-time system which receives new context information
every 5 seconds. The recognition time, however, is within real-
time range for both systems, Rt = 1.74s and Rt = 2.10s,
respectively, for utterances which are more than 3.5s long.

5. Conclusion
We have presented a novel approach to integrate dynamic con-
text information into a speech recognition system in real-time.
This approach extracts the ASR hypothesis in a first step and
then uses a weighted Levenshtein distance to update this hy-
pothesis in a context-based search space of all possible word
sequences. We evaluated our approach in the controller pilot
communication domain where command error rate is an impor-
tant metric. Using dynamic context information we could re-
duce command error rate from 15.8% to 3.9% using three hours
of speech data. In the future, we will investigate how perfor-
mance is influenced by less reliable context information.
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