
Building Blocks of Assistant Based Speech 

Recognition for Air Traffic Management Applications

Matthias Kleinert
1
, Hartmut Helmke

1
,  Heiko Ehr

1
, 

Christian Kern
2
, Dietrich Klakow

3
, Petr Motlicek

4
, 

Mittul Singh
3
, Gerald Siol

1
 

1 
Institute of Flight Guidance, German Aerospace Center 

(DLR), Braunschweig Germany, 

2
 Austro Control, Vienna, Austria 

3
 Spoken Language Systems Group (LSV), Saarland 

University (UdS), Saarbrücken, Germany 
4
 Idiap Research Institute, Martigny, Switzerland  

firstname.lastname@{dlr.de, austrocontrol.at, lsv.uni-

saarland.de, idiap.ch} 

Abstract—In air traffic control rooms around the world paper 

flight strips are replaced through different digital solutions. This 

enables other systems to access the instructed air traffic control-

ler (ATCo) commands and use them for other purposes. Digital 

flight strip solutions, however, require manual input from the 

ATCo and, therefore, increase the workload. Recently the 

AcListant® project has validated that Assistant Based Speech 

Recognition (ABSR, which integrates a speech recognizer with an 

assistant system) could be a solution to avoid this increase of 

workload. However, adaptation of ABSR to new environments 

usually requires a lot of data, time and expertise, which makes 

the process expensive. The MALORCA project used machine 

learning (ML) algorithms to provide a generic, cheap and effec-

tive approach for adaptation. Therefore, ABSR was divided into 

conceptual modules that contain generic parts (building blocks) 

and domain specific models. As first show case ABSR was auto-

matically adapted with radar data and voice recordings from 

Prague and Vienna approach. The fully trained system reaches 

command recognition rates (RR) of 92% (Prague) resp. 83% 

(Vienna) and command recognition error rates (ER) of 0.6% 

(Prague) resp. 3.2% (Vienna). The building blocks and models 

and their effect on RR and ER are presented in this paper.  

Keywords- Machine Learning, Assistant Based Speech 

Recognition, Building Blocks, Automatic Speech Recognition 

I. INTRODUCTION

Problem 

Recently, the Active Listening Assistant (AcListant®) pro-

ject [1] has shown that a new type of Automatic Speech 

Recognition (ASR) [2] called Assistant Based Speech Recogni-

tion (ABSR) developed by Saarland University (UdS) and 

DLR [3]-[6] could be a solution to bring ASR applications 

from training facilities into the ATC operation rooms. The 

ABSR system listens to the controller-pilot communication and 

extracts the ATCo commands. The extracted commands are 

directly shown to the ATCo in the aircraft radar label or an 

electronic flight strip system. This gives the ATCo more free 

cognitive resources for other tasks, because he does not have to 

input all those commands manually. Instead the ATCo just has 

to correct the system in case of a false recognition. In simula-

tion runs for the Dusseldorf approach area recognition rates 

better than 95% and error rates below 2% have been achieved. 

In general ABSR integrates ASR with an Assistant System 

to provide a situational context based on radar data, weather 

information and additional data that is generated by the Assis-

tant System. The provided context allows ABSR to modi-

fy/filter the results of ASR and to generate a search space for 

ASR that fits to the current air traffic situation. In the 

AcListant® project most of the time and budget (1.3M) have 

been used to adapt the necessary ABSR models and data to the 

needs of the ATCos controlling the Dusseldorf approach area. 

If ABSR needs to be transferred to other airports or ATCo po-

sitions (e.g. tower, departure) the models and data have to be 

changed manually for the selected environment. This process 

requires large amounts of data to be collected and expert 

knowledge for the necessary adaptations. In order to transfer 

ABSR to many different airports and ATCo positons this ap-

proach is too expensive and time consuming. 

Solution 

The Horizon 2020 SESAR project MALORCA (Machine 

Learning of Speech Recognition Models for Controller Assis-

tance) [7] choose machine learning (ML) as a potential solution 

to provide a generic, cheap and effective way for the adaptation 

process. The solution makes use of the radar data and voice 

recordings that are generated every day in operation rooms 

around the world. This data is used as input for machine learn-

ing algorithms that automatically learn and adapt the necessary 

components of the ABSR system. For this purpose the system 

was divided into several conceptual modules with specific 

tasks. Each of the modules consists of different building 

blocks, models and data. The building blocks are active pro-

cesses that fulfil certain tasks inside the modules. They are 

generic so that they can be reused for different controller posi-

tions and environments. Only the data and models are specific 

for each environment and need to be adapted or recreated 

through machine learning algorithms.  

Paper Structure 

In the next section we present related work with respect to 

machine learning and speech recognition applications in ATM. 

Section III describes the essential building blocks of an ABSR 

system, which conceptual model they belong to and how the 

modules interact with each other. In section IV we show the 
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effect that each individual building block has on the overall 

result of ABSR. Before we come to the conclusions in section 

VI, section V describes the adaptations that are necessary to 

transfer ABSR to new environments. 

II. RELATED WORK

A. Speech Recognition Applications in ATM

Artificial intelligence (AI) and in particular machine learn-

ing (ML) applications have made a significant progress in the 

last few years, enabling computers to make a series of major 

breakthroughs that were previously impossible [8]. The AI 

winter ended 10 years earlier with the paper by Hinton [9] on 

pre-training neural networks (NN). One of the successful “ap-

plication” fields of machine learning is automatic speech 

recognition (ASR), which has shown remarkable improve-

ments in understanding human conversational speech. Speech 

recognition has developed for a very long time independently 

of the developments in the machine learning community. Espe-

cially the Work by Mikolov et al. [10] in the area of language 

modeling and Seide et al. [11] on acoustic modelling have 

boosted the interest in neural networks in the speech communi-

ty. However, neural networks are very data hungry and thus 

difficult to apply to the ATM domain. 

B. Supervised and unsupervised learning

In machine learning different kind of learning are consid-

ered: supervised learning, where labeled training data is availa-

ble, unsupervised learning, where no labeled training data is 

available and semi-supervised learning, where some labeled 

data and a large amount of unlabeled data is available. A 

speech recognizer can either be treated as one big ML problem 

or it can be broken down into an ML problem for the so-called 

acoustic model and a separate ML problem for the so-called 

language model. For the acoustic model it is known that tech-

niques like MLLR (Maximum Likelihood Linear Regression) 

or MAP (Maximum a Posteriori) can be used in a semi-

supervised setting with some success [12]. Recently semi-

supervised learning of neural network based acoustic models 

for special domains like YouTube videos has been performed 

[13]. For language models, neither unsupervised learning nor 

semi-supervised learning has been very successful. Only su-

pervised learning is an established technique. For adapting 

non-neural LMs Bellegarda [14] gives a good overview. For 

adapting NN in a supervised fashion, this can either be done in 

a rescoring step [15] or by mapping the NN to a tree directly in 

the first pass for speech recognition [16]. 

III. BUILDING BLOCKS OF ASSISTANT BASED SPEECH 

RECOGNITION (ABSR) 

Figure 1 shows a rough overview of the four conceptual 

modules of an ABSR system, which are referred as DATA, 

TEXT, COMMAND and USER: The DATA module supplies 

the whole system with two types of input data: (i) dynamic and 

(ii) static. (i) Dynamic data is represented by the voice input

signal and input/output of an assistant system (i.e. radar data,

flight plan information, weather information, sequence data 

etc.) (ii) Static data for a given environment is represented by 

names of waypoints, runways, used frequency values etc. The 

TEXT module employs some of the data provided by the DA-

TA module and executes Automatic Speech Recognition 

(ASR) related tasks on a given voice signal. This includes a 

speech-to-text (S2T) conversion, i.e. the speech signal is trans-

formed via feature extraction into a sequence of words. Differ-

ent word sequence hypotheses may result from the same voice 

input. 

DATA

TEXT

Dynamic data

Static data

ASR

Command 
Extraction

COMMAND USER

Presentation

Plausibility 
Evaluation

Figure 1. Conceptual overview of ABSR modules

 The COMMAND conceptual module uses information 

provided by the DATA module to convert the different word 

sequence hypotheses generated by the TEXT module into air 

traffic controller (ATCo) command hypotheses. The output 

may still not be unique, i.e. different command hypotheses 

could result from the same voice input. Finally, the USER con-

ceptual module selects a unique output, which is adequately 

presented to the controller. For this task command plausibilities 

and command predictions (i.e. possible ATCo commands) 

which are both provided by the COMMAND module. If the 

output after this process is not unique or all of the command 

hypotheses are not plausible, no output is shown to the ATCo 

(except of maybe just a callsign highlighting). The output of 

the TEXT module is finally rejected. The following example 

clarifies these ideas: We assume that the controller pronounces 

“turkish five kilo juliet maintain two two zero knots or greater 

descent three thousand feet”. 

The output generated by the TEXT module can be as fol-

lows 

1. “turkish four kilo juliet maintain two two zero knots or

greater descent eight thousand feet” and

2. “turkish five kilo juliet descent two two zero descent three

thousand feet”

3. “hello four kilo juliet maintain two two zero or greater

descent three thousand aeh”

The output generated by the COMMAND module can be as

follows: 

1. THY4KJ MAINTAIN SPEED 220 kt OR_GREATER,

THY4KJ DESCEND 8000 ft and

2. THY5KJ DESCEND 220 none, THY5KJ DESCEND

3000 ft and
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3. 4KJ MAINTRAIN 220 none OR_GREATER, 4KJ DE-

SCEND 3000 none

Depending on the available context knowledge (i.e. the set

of predicted commands) this could be corrected to: 

1. THY5KJ MAINTAIN SPEED 220 kt OR_GREATER,

THY5KJ DESCEND 8000 ft (THY4KJ not in the air)

2. THY5KJ DESCEND 220 none, THY5KJ DESCEND

3000 ft and

3. THY4KJ MAINTAIN 220 none OR_GREATER,

THY4KJ DESCEND 3000 none (4KJ is an abbreviation)

The USER module with the plausibility evaluation (check-

er) should exclude the first (i.e. descent to 8000 feet is not ex-

pected) and the second (i.e. two descents do not (or seldom) 

occur in the same utterance) hypothesis. The third hypothesis is 

finally shown to the controller. Depending on the available 

Human Machine Interface, the ATCo will not even recognize 

the difference to the correct command transcription “THY4KJ 

MAINTAIN 220 kt OR_GREATER, THY4KJ DESCEND 

3000 ft” with the correctly recognized units. 

A. Elements of DATA conceptual module

The DATA conceptual module provides and generates the

necessary information for the TEXT and COMMAND module 

of the ABSR System. As shown in Figure 2 it consists of the 

following building blocks that provide dynamic information: 

Speech

Weather

Radar

DATA

Acoustic 
Recorder

Assistant 
System

Feature 
Extractor

ATC 
Grammar

Domain 
Knowledge

TEXT

COMMAND

Figure 2. Components and relations of DATA module

 Acoustic Recorder, which records an analog speech sig-

nal of the controller’s utterance into digital form. We use 8

kHz sampling rate.

 Assistant System, which provides e.g. radar data, flight

plan information, weather data and additional information

(e.g. landing sequence).

 Feature Extractor, which transforms the analog speech

signal recorded from the Acoustic Recorder into set of

conventional acoustic feature vectors X (i.e. mel-

frequency cepstral coefficients).

In addition to the building blocks the DATA module in

Figure 2 also contains the following static information: 

 ATC grammar, i.e. a set of rules which describes how the

different controller commands are combined by spoken

words. Rules contain terminals (in lower case letters) and

non-terminals (starting with upper case letter). The rules

are based on ICAO phraseology [17]and controllers’ local

interpretations of the ICAO rules. A REDUCE command

can be described by the grammar rules shown in Figure 3

 Domain knowledge is based on a given environment. This

includes the runway names, handover frequency values,

waypoint names and coordinates, pronunciations etc.

REDUCE := Callsign Type Value Qualifier Condition 

Type := “reduce”, “reduce to” … 

Value := SpValue [“knots”] 

Qualifier := “or greater” | “or less” | or empty 

SpValue :=  “two one zero” | “two ten” | “two zero zero” | “two 

     hundred”, | “one nine zero” … 

Callsign := … 

Condition := …  

Figure 3. Excerpt of Grammar for a REDUCE command

B. Elements of TEXT conceptual module

DATA

TEXT

COMMAND

ASR 
Decoder

N-Best 
Generator

Acoustic 
Model

Language 
Model

Lexicon

Domain 
Knowledge

Feature 
Extractor

Figure 4. Components and relations of TEXT module

The TEXT conceptual module uses information provided 

from or extracted by the DATA module and sends its results to 

the COMMAND module. Its building blocks are shown in Fig-

ure 4:  

 ASR decoder: The set of acoustic feature vectors X ex-

tracted by the Feature Extractor of the DATA module is

transformed into a sequence of spoken words W = (w1,

w2, w3 …), by applying the Bayes’ theorem to find the

word sequence which maximize a posteriori probability

P(W|X).

 N-Best Generator: Instead of extracting only the most

probable sequences of words, the N-Best-Generator selects

the N (e.g. 5) most probable word sequences W using the

ASR decoder.

Besides the hitherto described building blocks, the TEXT

module also contains three domain specific models that are 

necessary for ASR: 
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 The lexicon is one of the essential blocks of an automatic

speech recognition system. To be able to model all possi-

ble commands spoken by ATCos, we expand standard

CMU-Sphinx dictionary (of Carnegie Mellon University)

[18] by all ATM in-domain words (such as airline names,

waypoint names, etc. for a given approach area) to form an

extended pronunciation lexicon.

 The acoustic model (AM) models the regional difference

of speaking English (e.g. Czech English, or German Eng-

lish). Speaker independent versions and speaker dependent

versions are possible. Usually, Deep Neural Networks

(DNN) are used for acoustic modelling.

 Language Model (LM): Controllers often deviate from

standard phraseology and hence, ATC suggested Context-

Free Grammars (CFG) are too strict to learn the phraseol-

ogy used by controllers. N-gram statistical language mod-

els can deal with deviations which cannot be easily mod-

elled in CFG. An extended dataset is used for model train-

ing, further adapted to the ATC domain Language model

[21]. A grammar-induced class based Language Model

(LM) is used to generate sample sentences that fit the ATC

grammar. These sentences are then combined with ground-

truth transcripts available from training data and a 3-gram

statistical LM is finally built, which is then used for Finite-

State-Transducer-based ASR decoder.

C. Elements of COMMAND conceptual module

DATA

Domain 
Knowledge

TEXT

COMMAND

Command 
Hypotheses 
Generator

Corrector
Command 
Extractor

CPM

Command 
Filtering

Assistant 
System

ATC 
Grammar

N-Best 
Generator

USER

Figure 5. Components and relations of COMMAND module 

COMMAND conceptual module is used to convert the raw 

text sequences obtained from the N-Best Generator of the 

TEXT conceptual module to ATC commands. Important build-

ing blocks used in the COMMAND module (shown in Figure 5 

are:  

 Command Hypotheses Generator to generate a set of

commands, which are plausible (with respect to assistant

system information of the DATA module) in the current

air traffic situation.

 Corrector modifies the recognized word sequences from

the N-Best Generator of the TEXT module by leveraging

an e output of the Command Hypotheses Generator. For

instance a callsign: lufthansa alpha romeo might be re-

placed by lufthansa one alpha romeo, if only a DLH1AR

is in the air (i.e. on radar).

 Command Extractor transforms the corrected sequence

of words (e.g. “good morning speedbird beta one charly

reduce two ten or less”) to ATC commands (e.g.

“BWAB1C REDUCE 220 none OR_LESS”; none speci-

fies that unit knots was not spoken).

 As the Command Extractor transform the (ambiguous)

word sequences of N-Best-Filtering and its correction by

Corrector to command sequences the output of Command

Extractor might end up with multiple possible command

sequences.

 The Command Filtering block selects the most plausible

command sequence generated from spoken command,

while taking into account the set of possible commands

generated from the radar situation by the Command Hy-

potheses Generator.

Besides these building blocks, the COMMAND module al-

so contains a Command Prediction Model (CPM). CPM con-

tains the rules to generate the set of possible commands for 

target ATC approach. Details to CPM and its training by ma-

chine learning can be found in [19] and [20] 

D. Elements of USER conceptual module

COMMAND

Command 
Hypothesis 
Generator

Command 
Filtering

USER

Plausibility 
Checker

Controller

Figure 6. Components and relations of USER module 

USER conceptual module (Figure 6) selects the most plau-

sible ATC command from the set of outputs provided by the 

Command Filtering block to be finally shown to the user. More 

specifically, recognized commands, which either (i) do not fit 

to static domain knowledge (unknown waypoints), (ii) are not 

plausible (not predicted), (iii) are contradictory (climb and de-

scend in same utterance for the same callsign), or (iv) have low 

recognition plausibility (low plausibility values from TEXT 

block) are not shown to the user (ATCo). This is the task of the 

Plausibility Checker. Assuming the output of the Command 

Filtering is “THY4KJ MAINTAIN SPEED 220 kt, THY4KJ 

DESCEND 8000 ft” the output to the ATCo could  

 include both commands

 include only MAINTAIN SPEED resp. DESCEND com-

mand,

 include no command, resulting in NO_CALLSIGN

NO_CONCEPT

 include only the callsign (THY4KJ NO_CONECT)

Even a correction to THY4KJ CONTINUE PRE-

SENT_SPEED” is possible, if 220 knots is the current indicat-

ed airspeed (IAS) of THY4KJ.  
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IV. EFFECTS OF THE BUILDING BLOCKS 

In this section, we measure the effects of different building 

blocks with respect to the final result, i.e. the recognized com-

mand(s) which are sent to the HMI of the ATCo. 18 hours of 

untranscribed training data for Prague and 18 hours for Vienna 

airspace were used as development data to adapt all building 

blocks to target ATC approach. Details with respect to learning 

the models are already provided in subsection III.B and in [19] 

and [21]. 

A. Scenarios

In order to evaluate the effects of the different building

blocks, real radar and speech recordings from the Vienna and 

Prague airspace were used. For both airspaces, two different 

controller positions were taken into account. 

Figure 7. Arrival Transitions to Vienna Airport´s Runway 34 

Table 1 shows the used voice recordings in more detail. 

The first row (“ATCo”) contains the number of different 

ATCos separated into male and female. Next row shows the 

number of individual speech segments containing one complete 

voice transmission from an ATCo to a pilot. The segments are 

divided into manually transcribed transmissions, i.e. that the 

content of the transmission is known, and untranscribed trans-

missions. The last row shows the total amount of pure speech 

in minutes (speech without silence) that is contained in the 

speech segments. 

TABLE 1: SCENARIO VOICE DATA 

Airspace Prague Vienna 

ATCo 
Male 9 40 

Female 3 5 

Speech Segments 
Transcribed 3’039 3’012 

Untranscribed 12’034 14’361 

Pure Speech in min 
Transcribed 281 230 

Untranscribed 1’099 1’078 

For Vienna the speech and the radar data were recorded for 

the Feeder (Final Director) position and for the BALAD sector 

controller when runway 34 was in use. It is the duty of sector 

“BALAD” to bring arriving traffic in an orderly flow on the so-

called BALAD3N-Arrival-Transition, shown in Figure 7. This 

transition leads all arriving flights into a left-hand traffic pat-

tern. The Feeder has to mix it with other arrivals coming in 

from the right-hand traffic pattern and to establish all arrivals 

on final approach track providing prescribed distances in be-

tween. For Prague equivalent positions have been chosen when 

runway 24 was in use.  

B. Baseline with all building blocks

In [19] and [20] different metrics are defined to determine

the quality of an ABSR system. Some of those key metrics are 

reused here measuring the influence of the different building 

blocks: 

 Total number of given commands (#TgC),

 Command recognition rate (RR): number of correctly rec-

ognized commands, which are not rejected by CPM, di-

vided by #TgC (a command is correct if both the callsign

and the command type and the command value are cor-

rectly recognized) ,

 Command recognition error rate (ER): number of recog-

nized commands which were not spoken and not rejected,

divided by #TgC. These recognized commands are wrong-

ly shown to the ATCo.

As baseline, we evaluated those metrics for a fully active

ABSR System i.e. all the described building blocks are used. 

Those results are already reported in [19]. They are repeated 

here (see Table 2) and used to further describe the influence of 

the different building blocks. Since all building blocks are 

used, these results are also the best possible results for the cur-

rent system with the available test and training data.  

TABLE 2: METRICS WHEN USING ALL BUILDING BLOCKS (BASELINE)

Area Total Sector Feeder 

in [%] RR ER  RR  ER  RR  ER  

Prague 92.1 0.60 93.0 0.60 89.7 0.60 

Vienna 83.3 3.21 80.8 3.42 89.3 2.71 

Results based on 4,211 given commands from 3.84 hours of speech (no silence) for Vienna and 5,339 

given commands from 4.69 hours for Prague. Due to rejection rate RR and ER do not sum up to 100%. 

C. Effect of the Plausibility Checker

Table 3 shows the effect when the building block “Plausi-

bility Checker” from the USER module is not active: All out-

puts provided by the “Command Filtering” of module COM-

MAND are accepted and shown to the ATCo. This also in-

cludes commands that might be unlikely or even contradictory. 

TABLE 3: METRICS WHEN CHECKER IS NOT USED

Area Total Sector Feeder 

in [%] RR ER  RR  ER  RR  ER  

Prague 94.0 1.83 94.8 1.51 92.0 2.61 

Vienna 84.9 6.21 82.7 7.31 90.0 3.53 
Prague Delta 1.9 1.23 1.8 0.91 2.4 2.00 

Vienna Delta 1.6 2.99 2.0 3.89 0.7 0.88 

Rows with “Delta” show the absolute difference with respect to baseline with all building blocks. 
Improvements with respect to baseline are shown in green font, Degradations are marked with red font. 

As shown in Table 3, the command recognition rate (RR) 

slightly increases, because with the “Plausibility Checker” even 
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correct recognitions are sometimes accidently discarded Com-

pared to RR the error rate (ER), however, increases significant-

ly, if the “Plausibility Checker” is not active. The total ER in-

creases by a factor of 3 for Prague resp. 2 for Vienna. 

D. Effect of Command Hypotheses Generator

Table 4 shows the effect when no command predictions are 
generated by the building block “Command Hypotheses Gen-

erator” from the COMMAND module. This has an effect on 

several other modules. In this situation, the “Corrector” 

(COMMAND Module) cannot modify ASR output by taking 

into account the current airspace situation. Also the “Command 

Filtering” block (COMMAND Module) is not able to base its 

command selection on the set of predicted commands. At last 

the “Plausibility Checker” (USER Module) cannot employ 

command predictions as well to filter out false recognitions. 

TABLE 4: METRICS WHEN NO CONTEXT IS PROVIDED FROM HYPOTHESES 

GENERATOR

Area Total Sector Feeder 

in [%] RR  ER  RR  ER  RR  ER  

Prague 87.5 6.66 89.5 5.52 82.8 9.47 

Vienna 71.5 15.00 69.0 16.49 77.5 11.37 
Prague Delta -4.5 6.07 -3.6 4.92 -6.8 8.86 

Vienna Delta -11.8 11.78 -11.8 13.07 -11.8 8.66 

Rows with “Delta” show the absolute difference with respect to baseline with all building blocks. 

Improvements with respect to baseline are shown in green font, Degradations are marked with red font. 

As shown in Table 4 there is a clearly noticeable decrease 

in RR for Prague (-4.5%) and Vienna (-11.8%) if command 

predictions are available, but even more importantly there is a 

noticeable increase in ER. The total ER for Prague increases by 

a factor of 10 resp. almost 5 for Vienna. Command Hypotheses 

Prediction is fast, but it increases run time of TEXT module by 

a factor of 2. 

E. Effect of (Speaker Dependent) Acoustic Model

The test and training data for Prague and Vienna contain

speech recordings from different ATCos. In the baseline ABSR 

system, an individual speaker dependent acoustic model is cre-

ated (i.e. each controller gets another acoustic model trained 

from his/her recordings). In order to evaluate the influence of 

this speaker dependent acoustic modeling on the overall re-

sults, we executed the same experiments with a speaker-

independent acoustic model (i.e. the acoustic model is created 

from all speech recordings available from all ATCos).  

Table 5 shows the results with a speaker-independent 

acoustic model. For Prague, there is a significant degradation 

in RR and ER compared to the baseline. The Vienna data in-

stead shows a smaller degradation when the generic model is 

used. The reason for the bigger impact on the Prague results 

could be that the Prague speaker dependent acoustic models are 

based on four times more training data. We have roughly the 

same amount of training data, but in Prague from 12 controllers 

and in Vienna for 45 controllers. On the other hand the generic 

Vienna model is better, because it covers a wider amount of 

different voices. 

TABLE 5: GENERATING AVERAGE ACOUSTIC MODEL FROM ALL 

ATCOS (SPEAKER-INDEPENDENT ACOUSTIC MODEL EMPLOYED IN 

ABSR)
Area Total Sector Feeder 

in [%] RR ER  RR  ER  RR  ER  

Prague 88.6 1.07 89.2 0.93 86.9 1.43 

Vienna 82.6 3.42 79.6 3.65 89.8 2.88 
Prague Delta -3.5 0.48 -3.8 0.33 -2.7 0.82 

Vienna Delta -0.7 0.21 -1.1 0.23 -0.5 0.17 
Rows with “Delta” show the absolute difference with respect to baseline with all building blocks. 

Improvements with respect to baseline are shown in green font, Degradations are marked with red font. 

We repeated the same experiment with an acoustic model 

trained for a male resp. female controller. Table 6 shows the 

results when a model trained for one randomly selected (male) 

ATCo is used for all controllers. For Prague the RR and ER 

show a significant degradation compared to the baseline. The 

main reason is that the selected male model is delivering good 

results for most of the male controllers, but significantly worse 

results for the female controllers. For Vienna data the degrada-

tion is noticeable, but the selected male model here seems to fit 

quite well for male and female controllers. 

TABLE 6: GENERATING ACOUSTIC MODEL FROM ONE MALE ATCO (I.E. GEN-

DER-DEPENDENT ACOUSTIC MODEL).

Area Total Sector Feeder 

in [%] RR ER  RR  ER  RR  ER  

Prague 70.8 2.08 69.0 2.19 75.0 1.83 

Vienna 82.2 3.53 79.8 3.75 87.9 3.00 
Prague Delta -21.3 1.48 -24.0 1.59 -14.7 1.22 

Vienna Delta -1.1 0.32 -0.9 0.33 -1.4 0.29 

Rows with “Delta” show the absolute difference with respect to baseline with all building blocks. 
Improvements with respect to baseline are shown in green font, Degradations are marked with red font. 

Table 7 shows the results when a model trained for one fe-

male ATCo is used for all controllers. The female models se-

lected for this evaluation show significant deltas for both Vien-

na and Prague data in RR and ER.  

TABLE 7: GENERATING ACOUSTIC MODEL FROM ONE FEMALE ATCO 

(GENEDER-DEPENDENT ACOUSTIC MODEL).

Area Total Sector Feeder 

in [%] RR ER  RR  ER  RR  ER  

Prague 76.3 2.09 78.9 2.13 70.1 1.98 

Vienna 78.0 5.30 74.9 5.11 85.6 5.75 
Prague Delta -15.7 1.49 -14.2 1.53 -19.6 1.37 

Vienna Delta -5.2 2.08 -5.9 1.69 -3.7 3.04 

Rows with “Delta” show the absolute difference with respect to baseline with all building blocks. 
Improvements with respect to baseline are shown in green font, Degradations are marked with red font. 

F. Effect of N-Best Generator

The value N of the building block “N-Best Generator” from

the TEXT module is set to 5 in the baseline  (i.e. N-Best Gen-

erator delivers five most probable sequences of words which 

are then sent to the COMMAND module). To see the influence 

of this block we choose the following values for N: 1, 5 (base-

line), 10, 20 and 50. The results are shown in Table 8. 

If we analyze the results for N=1 for Vienna and Prague the 

ER is slightly better than the baseline, but the decrease in RR at 
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the same time has a bigger impact on the overall result. Chang-

ing N-Best to 10 slightly improves the RR for Prague and Vi-

enna. The changes in ER are almost 0% and therefore have no 

real impact on the overall performance of the system. With N-

Best values of 20 or 50 the performance (Comparison of 

changes in RR and ER) of the system still slightly improves for 

Vienna, but for Prague the performance almost stays the same. 

Increasing N has always a negative effect on the recognition 

time. From N=1 to N=5 it increases by a factor of 1.3. Howev-

er, Table 8 also shows that bigger N values can also decrease 

performance. 

TABLE 8: VARYING THE N-BEST OUTPUT OF ABSR

N-

best 

Area Total Sector Feeder 

in [%] RR  ER  RR  ER  RR  ER  

1 
Prague 91.4 0.56 92.2 0.58 89.3 0.52 

Vienna 80.8 2.85 78.8 3.01 85.7 2.45 

5 
Prague 92.1 0.60 93.0 0.60 89.7 0.60 

Vienna 83.3 3.21 80.8 3.42 89.3 2.71 

10 
Prague 92.2 0.57 93.1 0.60 90.0 0.52 

Vienna 83.7 3.21 81.3 3.42 89.4 2.71 

20 
Prague 92.1 0.73 93.1 0.63 89.7 0.99 

Vienna 83.7 3.22 81.4 3.43 89.4 2.71 

50 
Prague 92.0 0.62 92.9 0.63 89.7 0.61 

Vienna 83.9 3.16 81.6 3.44 89.6 2.46 

Improvements with respect to baseline (N-best 5) are shown in green font, Degradations are marked 
with red font. 

V. ADAPTATION TO NEW ENVIRONMENTS

In the previous section, we have seen the effects of the dif-

ferent building blocks. In this section, we describe what is 

needed to adapt the described ABSR architecture to a new en-

vironment. This includes on the one hand the transformation to 

new approach areas, e.g. from Prague to Frankfurt, and on the 

other hand also addresses the challenge to transfer from ap-

proach area to tower or enroute environment. The conceptual 

modules (DATA, TEXT, COMMAND and USER) distinguish 

between buildings blocks and data/models. In most cases an 

adaptation of the building blocks is not necessary, but the used 

data/models have to be changed/trained to fit to the needs of 

the target environment. 

In the following we draft the necessary adaptations to each 

individual conceptual module that are needed to transfer an 

ABSR system to another environment. 

A. Adaptation of DATA conceptual module

A lot of the data provided and generated by the DATA

Module is targeted to a specific environment. Obviously this 

data has to be changed for other target areas. This concerns the 

following parts: 

 ATC Grammar: This set of rules includes, besides the

standard ICAO phraseology, the local deviations control-

lers tend to make in different environments. A completely

recreation is, therefore, not necessary, but parts of it have

to be adapted manually to fit the needs of a specific target

area.

 Domain knowledge consists of data that is mainly unique

to a given environment (e.g. runways, waypoint names,

used frequencies etc.). That means that this knowledge has

to be defined manually again for every single environ-

ment.

 Assistant System in ABSR is used to provide information

that is already available (e.g. radar data, weather infor-

mation, sequence planning etc.) to other parts of ABSR.

Some sort of assistant system that has these information is

usually already being used at places were ABSR is useful.

Of course those systems are not generic and interfaces to

get the necessary data from those systems have to be im-

plemented.

B. Adaptation of TEXT conceptual module

 Acoustic model: The acoustic model is automatically

trained from transcribed or untranscribed data (see details

from the MALORCA project [19]). If enough data is

available for different controller and it is clear which con-

troller is speaking a speaker-dependent model slightly im-

proves recognition rates (see section IV.E)

 Lexicon: Each environment has its own waypoints and

some local words for greetings and good-bye. These need

to be manually added to the lexicon together with its pos-

sible pronunciations.

 Language model: As described in sect. II.B only super-

vised learning is an established technique for learning the

local deviations of the language model. If only low

amounts of labeled ATC text transcriptions are available

the grammar itself can be used to label available text even

from automatic transcriptions to ATC concepts. To further

help with sparsity, large amounts of text from an existing

ATC language models can be sampled in order to obtain a

good coverage of possible unseen events, see [20], [21] for

further details.

C. Adaptation of COMMAND conceptual module

For the COMMAND module adaptation is only necessary

for the command prediction model (CPM), but very crucial 

since the information of the CPM is used by several other 

building blocks. The CPM of course is unique for a given envi-

ronment and has to be recreated from scratch. As the 

MALORCA project has shown the CPM can be learned auto-

matically from controller audio recordings resp. automatic 

command recognitions based on those recordings and corre-

sponding radar data [19], [20]. 

D. Adaptation of USER conceptual module

No core parts of the ABSR system have to be modified for

the USER conceptual module. Obviously most environments 

where ABSR can be used, already have their own HMI. The 

HMI itself of course is a decisive part, because it has a big in-

fluence on the end-user (controller) acceptance. So adaptations 

to an existing HMI probably have to be made to show the out-

puts of the ABSR system. A standardization concerning an 
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interface to HMIs and the format of the transmitted commands 

[22] might help, but that is not in the scope of this paper.

VI. CONCLUSIONS

ASR is used in ATC at least since the late 90s with differ-

ent success. Recently, DLR and Saarland University have 

shown in the AcListant® project that acceptable command 

recognition rates are possible with ABSR which combines the 

output of an assistant system in form of context information 

with an ASR system. Adaptation of ABSR to different ap-

proach areas and controller positions, however, is expensive 

with respect to time and personal resources. 

Based on the MALORCA project this paper presented a so-

lution by dividing an ABSR system into different building 

blocks and models. The building blocks are reusable and the 

models can be automatically trained by unsupervised learning. 

Not all building blocks must be implemented, of course result-

ing in a performance decrease. Our experiments for Prague and 

Vienna show that the usage of the Command Hypotheses Pre-

dictor improves command recognition rate by a factor of 1.17 

and reduces error rate by a factor of 11.3. A speaker dependent 

acoustic model can improve command recognition rate by a 

factor of 1.04 and reduce the error rate by 1.8. Generating the 

N best word sequences can slightly improve recognition rate 

(factor 1.04), but decrease error rate (factor 1.3). 

Unsupervised learning of models is not new for ASR appli-

cations. MALORCA’s invention is to use the plausibility 

checker of ABSR to subdivide automatic transcriptions into 

good and bad learning data. Using command prediction with 

plausibility checking can attenuate the problem of today's Arti-

ficial Intelligence systems that they have nondeterministic re-

spectively difficult to predict behavior, i.e.using a second input 

sensor (radar data plus voice utterances) could enable certifica-

tion of AI system even in ATM applications. 
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