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Abstract—Air Navigation Service Providers (ANSPs) replace 
paper flight strips through different digital solutions. The in-
structed commands from an air traffic controller (ATCos) are 
then available in computer readable form. However, those sys-
tems require manual controller inputs, i.e. ATCos’ workload 
increases. The Active Listening Assistant (AcListant®) project 
has shown that Assistant Based Speech Recognition (ABSR) is a 
potential solution to reduce this additional workload. However, 
the development of an ABSR application for a specific target-
domain usually requires a large amount of manually transcribed 
audio data in order to achieve task-sufficient recognition accura-
cies. MALORCA project developed an initial basic ABSR system 
and semi-automatically tailored its recognition models for both 
Prague and Vienna approaches by machine learning from auto-
matically transcribed audio data. Command recognition error 
rates were reduced from 7.9% to under 0.6% for Prague and 
from 18.9% to 3.2% for Vienna. 
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I.  INTRODUCTION 

A. Problem 

To ensure the acceptance of any new feature developed by 
an Air Traffic Management (ATM) project, it is imperative that 
its benefits are clearly recognizable for the end-user at the very 
beginning when they are confronted with new tools. Therefore, 
the deployment of decision and negotiation support tools in 
current ATM business still requires a strong and manual adap-
tation to the local environment to avoid end-user frustration. 
Total system costs can easily exceed the threshold of one mil-
lion Euros. ATM system suppliers try to reduce costs by devel-
oping generic decision support tools, e.g. one basic Arrival 
Manager, which fits for many airports; an approach, which is 
often not successful and, therefore, costly adaptations are nec-
essary after system installation or even worse the new tool is 
not used by the ATCo (air traffic controller). 

Although air traffic control is an innovative business, paper 
flight strips are still in use. Written information on them is not 
available in digital form. Modern controller working positions 
(CWP), therefore, offer digital flight strips or totally stripless 
air traffic management systems. However, more than ever 
manual input is required from the controllers in such an envi-
ronment. Others have the benefits and the controllers get addi-
tional workload. The Active Listening Assistant (AcListant®) 
project [1] has shown that Assistant Based Speech Recognition 
(ABSR) is a potential solution to reduce controllers’ workload. 
The ABSR system developed by Saarland University 
(USAAR) and DLR analyses the controller pilot communica-
tion and shows the recognized commands in the radar label 
directly to the ATCo [2]. As command recognition rates better 
than 95% were achieved for Dusseldorf approach area, the con-
troller only needs to manually correct the output of the speech 
recognizer in less than one of twenty cases [3]. The controller 
gets additional free cognitive resources, which increase safety. 
Furthermore AcListant® validated that fuel reductions of 60 
liters per aircraft (based on an A320) and up to two landings 
more per hour are possible [4]. 

For Dusseldorf all the ABSR models were manually devel-
oped and maintained. This approach is too expensive if this 
manual work is required again for any new airport. 

B. Solution 

The Horizon 2020 SESAR project MALORCA (Machine 
Learning of Speech Recognition Models for Controller Assis-
tance) offers machine learning (ML) framework as a general, 
cheap and effective solution to automate the adaptation and 
customization process of ATM decision support tools [5]. Ad-
aptation of speech recognition models were selected as a first 
show-case of MALORCA. The MALORCA consortium con-
sists of two members from academia, Saarland University 
(Germany) and Idiap Research Institute (Switzerland), Air 
Navigation Service Providers from Czech Republic (ANS CR) 
and Austria (Austro Control) representing the user needs, and 

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The work is partly funded 
by SESAR Joint Undertaking (Grant Number 698824). Youssef Oualil contributed to this paper during his work period at Saarland University. Ajay Srinivasamurthy is currently with Amazon.com, Bangalore, 
India and contributed to this paper during his work period at Idiap Research Institute before joining Amazon 



 

 

the project lead German Aerospace Center (DLR) as the con-
necting element between basic research and business needs.  

 

Figure 1 Principal idea of MALORCA project to learn from historic data 

The proposed solution builds on the huge amount of target 
data recorded every day in the operation rooms (Figure 1). 
Each Air Navigation Service Provider generates Mega Bytes or 
even Giga Bytes of radar data and voice recordings on a daily 
basis. These recordings are the input for machine learning algo-
rithms, which improve the models of a basic ABSR system. 
Improvement is possible once or permanently on daily basis. If 
a new waypoint is added it would be learned, if a waypoint is 
removed it would be “unlearned” etc.  

C. Paper Structure 

In the next section we present related work with respect to 
machine learning and speech recognition applications in ATM. 
Section III describes the building blocks including the different 
recognition models of an Assistant Based Speech Recognizer. 
In section IV we show the independent training of each ABSR 
model, whereas section V shows the iterative and dependent 
improvement of each of the three main ABSR models. The last 
section VI before the conclusions presents the results of the 
iterative model improvements. 

II. RELATED WORK 

A. Speech Recognition Applications in ATM 

Artificial intelligence (AI) and in particular machine learn-
ing applications have made a significant progress in the last 
few years, enabling computers to make a series of major break-
throughs that were previously impossible. One of the success-
ful fields is automatic speech recognition (ASR), which has 
shown remarkable improvements in understanding human con-
versational speech.  

Speech Recognition applications have dramatically im-
proved during the last decade (e.g. Siri®, Alexa, Google Assis-
tant). The integration of ASR in ATM training started already 
in the late 80s [6]. Today ASR applications go beyond simula-
tion and training. ASR is e.g. used to get more objective feed-
back of controllers’ workload [7]. Chen and Kopald used 
speech recognition to build a safety net for airport surface traf-
fic to avoid aircraft entering a closed runway [8]. Most recently 
they presented an approach to detect pilot read back errors [9].  

A good introduction into the state-of the art of ASR appli-
cations in the ATM domain until 2014 is given by Nyuyen and 
Holone [10]. They identified five challenges that need to be 
overcome, so that ASR applications are more successful in the 
ATM domain: 

1. Callsign Detection: many different pronunciations and 
word combinations exists e.g. already for the callsign 
DLH123A: lufthansa one two three alpha, or hansa 
three alpha or delta lima hotel one two three alpha … 

2. Poor Input Signal Quality: background noise, 8 kHz or 
even worse signal frequency, late pressing of push-to-
talk button, hesitations, slurred speech etc. 

3. Ambiguity: Although the vocabulary in controller pilot 
communication is quite limited and phraseology is re-
stricted, recognition rates are still far from being per-
fect: two four five could be interpreted as a callsign, a 
heading, a speed or a flight level. 

4. Use of Non-Standard Phraseology: Nguyen et al. [10] 
claim with respect to [11] that at least 80% of all pilot 
transmissions contain at least one error. We will not be 
able to change the controllers and pilots. The solution 
is to adapt the ASR systems. Usage of standard phra-
seology will improve bit by bit, when pilots and con-
trollers recognize that they are directly benefitting 
from using correct phraseology. 

5. Dialect, Accents and Multiple Languages: Spanish 
controllers may speak to a VFR flight in Spanish and 
to a lufthansa callsign in English or the greeting to the 
lufthansa maybe in German whereas the rest is in Eng-
lish. 

One promising approach to improve ASR performance is 
using context knowledge regarding expected utterances. These 
attempts go back to the 80s [12], [13]. Context may heavily 
reduce the search space and lead to fewer misrecognitions [14]. 
DLR and Saarland University went one step further when using 
an Arrival Manager (AMAN) as context source [15], [16].  

 

Figure 2 Components of ABSR; in green components of AMAN 4D-
CARMA; in yellow components of core speech recognizer (taken from [19]) 

An Arrival Manager (AMAN) (4D-CARMA) as seen in 
Figure 2 analyzes the current airspace situation and predicts 



 

 

possible future states, which are used by the “Hypotheses Gen-
erator” to predict a set of possible commands [2]. This signifi-
cantly reduces the search of the “Lattice Generator” [17], [18]. 
The search lattice is dynamically regenerated and contains a 
search tree for all possible word sequences determined by the 
“Hypotheses Generator”. The “Speech Recognizer” finds the 
most probable path in the search tree. The output of the 
“Command Extractor” is checked again by the “Plausibility 
Checker”, determining whether the recognized commands are 
reasonable in the current situation. The “Command Monitor” 
analyzes the future behavior of the aircraft (via radar data), 
whether they are in line with the “Command Extractor’s” out-
put. 

B. Supervised and unsupervised learning 

Machine learning aims to model rules that can map input 
data to meaningful output labels. Input data can be position, 
speed and altitude of an aircraft, output label could the possible 
command type (DESCEND, REDUCE, TURN_LEFT). Output 
labels can be categorical, in which the task is called classifica-
tion, or could be continuous valued in a regression task. Cur-
rent machine learning methods require examples to train such 
models.  

Based on the training data available, machine learning 
methods can be supervised, unsupervised or semi-supervised 
[20], [21]. In supervised learning, we require data samples and 
corresponding output labels, and several different algorithms 
can be used to learn the input output relationship. However, in 
unsupervised learning, the output labels are not available and 
the machine learning algorithm just uses the data examples to 
learn both output labels and the rules to model data. Typical 
unsupervised learning approaches include data clustering to 
partition data according an optimization criterion. In semi-
supervised learning, partially labeled set of examples are used 
to build a machine learning model. 

While supervised learning requires expensive labeled data, 
unsupervised learning methods often suffer from poor perfor-
mance. A good tradeoff is semi-supervised learning, where an 
initial seed model is built using limited amounts of labeled 
examples, which is then improved further using a large number 
of relatively cheap unlabeled examples.  

Several different machine learning tools for classification 
and regression exist. Recently, neural network models have 
been shown to accurately learn arbitrary input output relation-
ships. Neural network models require extensive computational 
resources and are mainly effective when large number of ex-
amples are available, e.g. to build acoustic models for the 
ABSR system [22]. In this paper, we explore semi-supervised 
learning and adaptation of different ABSR components.  

Specifically, for certain ABSR components like acoustic 
and language models (presented in section III), semi-
supervised training has been beneficial in improving perfor-
mance in low-resource scenarios, (i.e. small amount of training 
data as in MALORCA) [23], [24], [25], [26]. For acoustic 
modeling, researchers have applied various data-selection 

schemes to utilize the additional unlabeled data [27], [28], [29], 
[30], [31], [32]. In this paper, we apply a technique built specif-
ically to account for semantics of the ATM domain [27]. For 
language modeling, however, the additional data available can 
still be unreliable and we automatically generated further tran-
scripts which are used to train language models. Prior work 
[33], [34] has applied these techniques successfully for speech 
recognition in other domains different from ATM. 

C. ABSR combined with CPDLC 

A new method that is increasingly used to transfer messag-
es from the ground to the cockpits is datalink technology. 
CPDLC (Controller Pilot Data Link Communications) [35] is a 
standard to formalize command and information exchange be-
tween controllers and pilots and vice versa. Today in Austro 
Control and ANS CR this system is mainly used with aircraft 
in the enroute phase of flight and for a limited type of com-
mands. At least maximum transmission times are longer than 
those of voice communications [36]. Hence, voice is and will 
remain the most important means of communication in ATM. 

Nevertheless, ABSR is expected to be also beneficial if 
CPDLC is used. Even if not talking to pilots the controllers 
may still use voice to do the required inputs into the system and 
the transmission of the appropriate datalink-messages will au-
tomatically be triggered by the system. Human machine inter-
faces using a comprehensive speech recognizer are proven to 
be highly efficient so it is expected to provide benefits in any 
currently foreseeable technological environment in ATM. 

III. BUILDING BLOCKS OF ASSISTANT BASED SPEECH 

RECOGNITION 

Assistant Based Speech Recognition (ABSR) normally uses 
three main models (dark blue ovals on left side in Figure 3), 
which need to be trained / adapted for each ATM environment 
(approach area) separately:  

1. Acoustic Model,  

2. Language Model (e.g. grammar) and  

3. Command Prediction Model (CPM).  

Figure 3 shows in the upper part how those three models 
are used within ABSR: Rectangles describe tasks and light blue 
ovals inputs and outputs. The CPM is used by the Hypotheses 
Generator to derive a set of commands (Command Hypothe-
ses), which are possible in the current situation. These com-
mands are used as input for Automatic Speech Recognition 
(ASR) to reduce the search space size and to guide the search 
process of the speech recognition system. 

The other two models (acoustic and language) are directly 
used by ASR. A controller utterance, given in form of audio 
signal, is transformed into a feature vector X. Acoustic and 
language model are used to transform the feature vector into a 
sequence of spoken words W = (W1, W2, W3, …), i.e. we apply 
the Bayes’ theorem to find the word sequence which maximize 
a posteriori probability P(W1, W2, W3, …/ X). In particular, 



 

 

statistical language models have shown to be beneficial in 
comparison to a hand-written grammar in an ATM environ-
ment [37]. This automatic modeling scheme is simple to im-
plement depending only on the availability of the transcribed 
text and easy to manage. A sequence labeling approach (Com-
mand Extractor in Figure 2) then extracts the relevant concepts 
and commands from the recognized word sequence W by also 
using the language model and especially the Command Hy-
potheses.  

An ontology for modelling the semantics of controller word 
sequences is being developed by SESAR 2020 project PJ 16-04 
[38]. It describes also the allowed types (e.g. DESCEND, RE-
DUCE, INCREASE, CLEARED_ILS).  

 

Figure 3 Interaction of Acoustic, Language and Command Prediction Model 

IV. INDEPENDENT TRAINING OF THE DIFFERENT MODELS 

This section describes the training of the three main models 
of ABSR. First we introduce the used metrics to determine the 
quality of our models. In the next subsection we concentrate on 
the training of the CPM. The last two subsections describe the 
training of the acoustic and language model. In the following 
section we then describe the iterative training of all three mod-
els. 

A. Used Metrics 

The following metrics are used to determine the quality of 
the learned models:  

 Word Error Rate (WER): number of words which are 
wrongly recognized (substitutions) plus number of words 
not pronounced, but recognized (insertions), plus number 
of words not recognized, but pronounced (deletions), di-
vided by the total number of spoken words 

 Total number of given commands (#TgC), 

 Command recognition rate (RR): number of correctly rec-
ognized commands, which are not rejected by CPM, di-
vided by #TgC (a command is correct if both the callsign 
and the command type and the command value are cor-
rectly recognized) , 

 Command recognition error rate (ER): number of recog-
nized commands which were not spoken and not rejected, 
divided by #TgC, 

 Pure command recognition rate (PRR): number of correct-
ly recognized commands, without considering rejection by 
Command Filtering using CPM, divided by #TgC, 

 Pure command recognition error rate (PER): number of 
recognized commands which were not spoken (false 
recognitions), divided by #TgC, 

 Command prediction error rate (CpER): number of com-
mands included in gold commands, which were not pre-
dicted, divided by #TgC, 

 Average number of predicted commands per aircraft 
(#NPC), 

We reject a recognized command if it is not predicted by 
CPM. PRR and PER consider the output of the pure ASR sys-
tem without using the set of predicted commands. Rejections 
are also possible here, i.e. if the output callsign of ASR is 
NO_CALLSIGN resp. if the output type of the command is 
NO_CONCEPT (see [19] for a more detailed definition of 
these rates). Sometimes more commands are erroneously rec-
ognized than given (so called insertions). This may result in an 
increase of ER resp. PER, if not rejected. If fewer commands 
are recognized than given (so called deletion), this is always 
counted as a rejection.  

B. Training of the Command Prediction Models 

For each command type a prediction area is modelled as 
shown by the dark hash symbols (‘#’) in Figure 4. Additionally 
we add a set of predefined rules to each command type (e.g. IF 
flight type is arrival AND controller working position is Feeder 
AND speed > 220 knots). If the “Hypotheses Generator” de-
tects that a lat/long position of an aircraft is inside an area of a 
specific command type and the rule condition for this area is 
true, the command values related to that flight and command 
type are predicted for that aircraft. Each symbol in the predic-
tion area (see Figure 4) represents a square of 1 nm by 1 nm. 
These areas can be created manually [39] or learned automati-
cally from transcribed controller utterances and corresponding 
recorded radar data. This, however, requires either expert 
knowledge for manual creation and/or expensive manual tran-
scription work of recorded utterances. In order to remove the 
need of manual work, our approach tries to learn these areas 
from automatic transcriptions (task “Area Learning” in Figure 
3). For each controller utterance the corresponding lat/long 
positions are known from the recorded radar data, but the (cor-
rect) controller commands, however, are unknown. The only 
things we know are the recognized commands from the Auto-
matic Speech Recognition in Figure 3.  



 

 

 

Figure 4 Prediction area of CPM for Cleared ILS-Command for Arrivals, each 
dot represents an area of one square mile; the small green arrow represents the 

position of runway 24.  

 

If we have a controller utterance like, “sky_travel two five 
zero nine reduce two one zero knots”, ABSR should normally 
recognize the expected command “TVS2509 REDUCE 210”. 
Afterwards this command could be used, together with the cor-
responding radar data (which amongst others includes flight 
plan information) for automatic learning of the command pre-
diction model (CPM).  

The Command Filtering in Figure 3 tries to filter out false 
recognitions. A resulting command prediction area for the 
CLEARED_ILS command for arrivals for the director position 
in Prague is shown in Figure 4. 

With a closer look to Figure 4 two problems become obvi-
ous: (1) outliers, which are probably the result of false recogni-
tions the “Command Filtering” did not catch, (2) small gaps, in 
which no Cleared ILS command was observed in the training 
data, but is very likely if more data would be available.  

To close the gaps and also expand/smooth the borders of 
the learned areas we assumed that a valid command that ap-
pears at a certain position in the training data is not only valid 
for this position, but also for the nearby positions. That means, 
we do not only mark the respective 1*1 area, in which a com-
mand occurs, but also the surrounding areas. In this context an 
expansion window size of 13 means that we also mark the 168 
neighbors (13*13-1) of a certain lat/long position in which a 
command occurred. In addition to the window size 25 in Figure 
5 we experimented with different window sizes for expansion 
and gap closing. More details also with respect to filtering of 
outlier are provided in [40]. 

 

 

Figure 5 Prediction area of CPM for Cleared ILS-Command (left) and 
HANDOVER_FREQUENCY (right) for Prague Arrivals for Director (expan-

sion window 25x25); green arrow is runway 24 

 

Figure 6 Dependency of Command Recognition Rate (RR) on training data 
size and window size for Prague for all command types 

Figure 6 and Figure 7 show the dependency of Command 
Recognition Rate (RR) and Command Recognition Error Rate 
(ER) from window size and amount of used training data. It is 
not surprising that the RR increases with larger window sizes 
and with the amount of training data used, because more com-
mands are predicted by the Hypotheses Generator. On the other 
hand ER also increases with increasing window size because 
less false recognitions are rejected since they were also predict-
ed by CPM.  



 

 

 

Figure 7 Dependency of Command Recognition Error Rate (ER) on training 
data size and window size for Prague for all command types 

All in all the best compromise between high RR and low 
ER was observed with a window size of 25 [40]. The resulting 
areas of the CLEARED_ILS and HANDOVER_ FREQUEN-
CY command type are shown in Figure 5. 

C. Training of the Acoustic Model  

To develop the acoustic model, we rely on open source out-
of-domain English corpora used to initialize the training [33]. 
As in-domain ATM recordings from both Prague and Vienna 
approaches are of 8 kHz quality, the same type of data is used 
over all acoustic modeling. 

A lexicon is one of the essential blocks of an automatic 
speech recognition system. To be able to model all possible 
commands spoken by ATCos, we expand standard CMU-
Sphinx dictionary [41] by all ATM in-domain words (such as 
airline names, waypoint names, etc. for a given approach area) 
to form an extended pronunciation lexicon subsequently used 
by acoustic and also language models in the ASR engine. 

For acoustic modeling, we rely on conventional technology 
combining deep learning (i.e. deep neural networks) employed 
in Hidden Markov Modelling (HMM) framework. The tech-
nology referred to as hybrid acoustic modeling not only offers 
state-of-the-art performance, but also allows for rapid acoustic 
domain adaptation, which is essential for our ABSR system 
and used for: 

 speaker-dependent modeling: As we know which con-
troller is speaking the general acoustic model can be 
adapted to each ATM controller to model speaker-
specific variability captured in speech resulting in a 
reduction of the word error rate (WER), 

 bootstrapping the model from rich resources (i.e. out-
of-domain dataset) leveraging other ASR application 
domains and adapting the generic model to a target-
domain: As MALORCA does not offer sufficient 
amount of training data to develop robust acoustic 
models for ASR, we used 150 hours generic manually 
transcribed open-source English speech data (e.g. 
meeting recordings or read-speech corpora). The ini-
tial acoustic model is eventually adapted using in-
domain dataset for the target ATM approach. 

 iterative re-training: Acoustic, language and command 
prediction models provide confidence measures which 
can be used to assess quality of automatically generat-
ed transcripts related to new speech data. The fused 
confidence measure can be directly applied to select 
the relevant speech data and iteratively re-train the 
hybrid acoustic model.  

D. Training of the Language Model  

Language modeling techniques like the grammar-based 
models provide a large set of rules to cover the phraseology 
used by controllers whereas, the statistical language models 
learn these rules automatically along with the deviations regu-
larly made by controllers (assuming enough training data is 
available) and also adapt to these deviations in a more robust 
manner than a grammar-based model. 

TABLE 1: GRAMMAR MAPPING THE COMMAND “DLH23B REDUCE 250” TO 

CONCEPTS (CLASSES) 

Command Mapped Concept 

DLH AIRLINE Identifier 

23 CALLSIGN NUMBER 

B CALLSIGN LETTER 

REDUCE ACTION 

250 NUMBER 

 

In our experimental work, we continue exploring statistical 
language models. Even though, the statistical language models 
have been shown to perform better than Grammar-based mod-
els [37], the MALORCA project has raised a unique challenge 
when building these statistical models, as the initial amount of 
transcribed data is relatively small (< 4 hours). As this can lead 
to a poor coverage of ATM commands, we alleviate this prob-
lem in MALORCA, by leveraging the ICAO grammar [42] and 
constructing a hybrid statistical language model from this 
grammar and already trained, statistical language model. 

The grammar specifies the set of rules, defining the corre-
spondence of command words to concepts (classes). An exam-
ple of this correspondence applied to the command “DLH23B 
REDUCE 250” is shown in Table 1. 

These classes can then be used to build a class-based statis-
tical language model [43] which has shown improved perfor-
mance in a speech recognition system. Intuitively, this class-
based language model allows overcoming the lack of data by 
mapping everything to a class space. In this class space, corre-
lations can be learned at a concept level, unlike the regular sta-
tistical language models used earlier [18].  

These class-based and regular statistical language models 
are linearly interpolated Fehler! Verweisquelle konnte nicht 
gefunden werden. to produce the hybrid statistical language 
model. Finally, this hybrid language model is converted to a 
first-pass decoding finite state transducer [21] and employed in 
the ABSR pipeline.  



 

 

The data for training the different speech recognition mod-
els is produced iteratively. Hence, the language models are re-
trained each time a new portion of data is automatically tran-
scribed. This re-training involves creating the regular statistical 
language model on the combined original and automatically-
transcribed portion. Similarly, the class-based statistical lan-
guage model is re-trained on this combined dataset. See also 
Fehler! Verweisquelle konnte nicht gefunden werden. for 
details of acoustic and language model training in MALORCA 
project. 

V. ITERATIVE MODEL IMPROVEMENT  

As shown in the bottom yellow shaded part of Figure 3, au-
tomatic learning of the predictions areas will result in an im-
proved “Command Prediction Model”, which we expect will 
also improve the “Command Hypotheses” iteratively resulting 
in better “Recognized commands”. The aim of the MALORCA 
project, however, is to learn/improve also the other ABSR 
models. The “Command Filtering” in Figure 3 helps also to 
improve both the acoustic and language model, because the 
learning algorithms for acoustic and language model use the 
feedback from the additional sensor “Radar data” to decide 
whether an automatic transcription is good or improvable.  

Figure 9 shows the principal setup. First we use the untran-
scribed data from August 2016 and train all three models from 
them. This step results in an ABSR System called ABSR Au-
gust. We use this system and evaluate with all the testing data 
and determine the metrics defined in subsection IV.A for the 
ABSR August system. Then we additionally add untranscribed 
data from September and retrain our models on the data of Au-
gust and September. We get a system ABSR September and 
determine the metrics again. In the same way we continue with 
the data from the other months. In detail we do not always use 
the data from exactly one month, but rather we select the data 
according to the total length of the dataset: practically, we first 
select 25%, then the first 50%, then the first 75% and then all 
(100%) data. In fact, this is nearly equivalent to taking the data 
on monthly basis. 

Figure 8 shows our approach in more detail. We start with 
“zero” amount of (0%) untranscribed data and add 70% of the 

transcribed data and we train both the acoustic and language 
model (AM, LM) of the ASR system. For the command predic-
tion model (CPM) we use 10% of the untranscribed data, but 
we completely exclude transcribed data to demonstrate that 
CPM can be learned from untranscribed data only. With this 
baseline model (model-0%) we evaluate the command recogni-
tion, command recognition error rates, etc.  

 

Figure 9 General setup for iterative improvement of recognition models  

The baseline recognizer is then improved through multiple 
iterations with more and more data. At the beginning it is used 
to transcribe the first 25% of the untranscribed controller utter-
ances and the baseline CPM is applied to classify all the recog-
nized commands into “good” and “bad” learning examples. 
Generated command recognitions which are not part of the 
predicted command hypotheses are classified as bad examples 
and not used for acoustic and language model training (see 
Table 2 for amount of data pre-selected for re-training).  

TABLE 2: AMOUNT OF DATA PRE-SELECTED FROM AUTOMATICALLY 

TRANSCRIBED DATA OVER (K) ITERATIONS 

 Prague Vienna 

k (split) Total 
(hours) 

% selected Total 
(hours) 

% selected 

1 (25%) 4.5 56.4 4.6 48.7 

2 (50%) 9.2 75.8 9.1 73.6 

3 (75%) 13.7 78.0 13.7 77.2 

4 (100%) 18.3 78.4 18.2 78.8 

 

Figure 8 Detailed setup for iterative improvement of recognition models 



 

 

The resulting model of the AM and LM is used afterwards 
to automatically transcribe again the untranscribed 25% data 
set. In this second step the recognized commands are used to 
create the improved CPM. Eventually, ASR1 system (based on 
25% of the data) is obtained. This system is then used as a 
starting point for the next iteration (applying 50% of the un-
transcribed data). This process is repeated until all of the data 
has been used for training of AM, LM and CPM. 

VI. RESULTS OF ITERATIVE MODEL IMPROVEMENT 

For evaluation we used different test utterances from Pra-
gue and Vienna approach which were manually transcribed 
(see Table 3), i.e. for these utterances the correct transcription 
(so called gold commands) were known. For Prague we have 
3’039 different utterance from 31 different sessions, i.e. record-
ing periods lasting between 30 minutes and two hours. Com-
mand transcription resulted in 5’339 different commands (i.e. 
an utterance contains on average 1.8 commands) 

TABLE 3: SIZE OF TEST DATA SET 

Approach 
Area 

# Utterances #  given 
commands 

# sessions 

Prague 3’039 5’339 31 

Vienna 3’012 4’211 24 

A. Results for Vienna Approach 

TABLE 4: METRICS FOR ITERATIVE IMPROVEMENT FOR VIENNA APPROACH 

Amount of 
untranscribed 

data used 

RR 
[%] 

ER 
[%] 

PRR 
[%] 

PER 
[%] 

CpER 
[%] 

#NPC 

0% 60.0 1.6 67.2 18.9 15.2 14 

25% 80.2 3.5 84.0 7.4 6.7 29 

50% 82.4 2.8 84.7 6.7 4.6 39 

75% 84.2 3.0 85.6 7.0 3.5 47 

100% 85.2 3.2 86.4 6.6 3.2 53 

Results based on 4211 given commands from 3.84 hours of speech excluding silence, i.e. 21.1 hours of 
radar data time  

In Table 4 the results for Vienna Approach are presented. 
The first row (0%) in this table shows the results when we first 
trained the three models (AM, LM, CPM) without any untran-
scribed data for AM and LM training, although 10% of the 
untranscribed data was already used for the CPM (for more 
details see section V). The following rows show the results for 
the training with 25%/50%/75% and 100% of the untranscribed 
data for all of the three models.  

The first two columns of the table (RR and ER) show the 
performance of the complete ABSR system. It includes com-
mand filtering with the help of the CPM. The columns PRR 
and PER shows the performance of the pure ASR system with-
out any command filtering. There is of course always a de-
crease in recognition rate when using command filtering, i.e. 
from PRR to RR, because sometimes the command filtering 
through the CPM falsely rejects correctly recognized com-
mands. With the 0% system for example there is a decrease in 
recognition rate by 7.2% from pure ASR to ABSR system, but 
the use of the CPM from the ABSR system decreases the error 
rate at the same time significantly by 17.3%. 

The last two columns of Table 4 give some additional in-
formation about the quality and the amount of predicted com-
mands per aircraft (for more detail see subsection IV.A). 

B. Results for Prague Approach 

Table 5 presents the same metrics as Table 4, but for the 
Prague approach area. We can see a similar increase in RR 
with more data for training and a similar influence of the 
ABSR system on ER. Overall the numbers for Prague are bet-
ter than for the Vienna approach. The main reason for that is 
the better quality of audio data provided for Prague approach.  

TABLE 5: METRICS FOR ITERATIVE IMPROVEMENT FOR PRAGUE APPROACH 

Amount of 
untranscribed 

data used 

RR 
[%] 

ER 
[%] 

PRR 
[%] 

PER 
[%] 

CpER 
[%] 

#NPC 

0% 79.8 0.29 85.9 7.90 8.1 28 

25% 90.2 0.32 93.7 2.2 4.4 45 

50% 91.3 0.37 93.5 2.3 3.0 58 

75% 91.7 0.45 93.6 2.4 2.5 67 

100% 91.9 0.60 93.7 2.4 2.3 70 

Results based on 5339 given commands from 4.69 hours of speech excluding silence, i.e. 25.7 hours of 
radar data time 

 

If we look at the improvements in RR from 75% to 100%, 
it seems relatively small compared to the loss in ER. However, 
the November 2016 data that was used for the 100% evaluation 
contained a frequency change for different controller working 
positions in Prague. This change had an impact on the preci-
sion of the ABSR system. Deeper analysis with more data rec-
orded after November 2016 would be necessary to determine 
the extent of this impact. 

C. Interpretation of Results 

The results in Table 4 show that the learning curve of Vi-
enna does not reach its saturation limits. Increasing the data 
size by a factor of 2 (from 25% to 50% and from 50% to 
100%) still improves the values. RR increases by 2.2% (abso-
lute) from 25% data size to 50% data size and again by 2.8% 
(absolute) from 50% to 100%. If we extrapolate the currently 
available 100% data by a factor of 8 RR of 90.2 % with ER of 
4.4% for Vienna seems to be possible.  

The results in Table 5 show that for Prague data it seems 
like the trained models are already close to saturation, , i.e. the 
currently available 100% of learning data would be already 
sufficient. But as already mentioned in the previous subsection 
the change of frequencies that occurred in November 2016 in 
Prague would require further analysis to determine its influence 
on the overall performance. If we perform the same data ex-
trapolation as for Vienna with 8 times more data the recogni-
tion rate for Prague could reach 92.6% with an error rate of 
1.3%.  

If we compare the command prediction error rate (CpER) 
the models for Prague seem to be better than for Vienna (1.8% 
versus. 2.3%). There are different reasons for this:  



 

 

 Prague radar data covers usually 60 to 90 minutes of 
runtime, whereas Vienna data sometimes covers more 
than 14 hours, i.e. a callsign which is landing at Vien-
na may start in the same data set. The (simplified) 
ARR/DEP classification of a callsign, however, is 
kept for the whole day. This miss classification leads 
to wrong predictions for some aircraft. To reduce this 
influence we manually corrected some of the miss 
classifications. 

 In Vienna only runway 34 for ARR and runway 29 for 
DEP were modelled. In some of the provided data, 
however, both runways were used for inbounds. 
Commands for inbound aircraft on runway 29 were, 
therefore, often wrongly predicted. To reduce this in-
fluence we excluded all directories from evaluation 
which contained a significant number of inbounds at 
runway 29 

Table 4 and Table 5 show that the command recognition er-
ror rate (ER) goes up, when the amount of training data is in-
creased. The command recognition rate (RR) then also goes up. 
The same applies for the number of predicted commands per 
aircraft (see column #NPC). This, however, increases the 
search space of possible command hypotheses. The CPM per-
formance of differentiating between good and not so good (or 
not so likely) command predictions decreases. In technical 
terms, the recall (incorrectly rejected commands) in context 
increases while the precision (number of falsely accepted 
commands) decreases. Increasing the number of training data 
should not increase the number of predicted commands. This 
means that the command prediction model learning needs to be 
improved, to make better predictions. This is e.g. possible by 
adding plausibility value to each predicted command and limit-
ing e.g. the set of predicted commands to the N (e.g. 50) most 
plausible one for a given aircraft. 

VII. CONCLUSIONS 

MALORCA started with the idea that radar data as an addi-
tional sensor modality will improve unsupervised learning of 
speech recognition models. The approach was successfully 
validated using historic radar and speech recordings from the 
ops rooms of Vienna and Prague. Speech signal quality signifi-
cantly influences the ABSR system performance. This is clear-
ly demonstrated by the difference in achieved command recog-
nition error rates which were below 0.6% for Prague and re-
stricted to 3.2% for Vienna having a much higher signal to 
noise ratio. We also demonstrated by incrementing the amount 
of training data in steps of 25% that an iterative learning is pos-
sible, i.e. the recognition rate will further improve by adding 
more and more training data. 

We have shown that even with small amounts of transcrip-
tion data (in combination with large amount of out-of-domain 
data) we can achieve command recognition rates close-to 92%. 
MALORCA is based on four hours of transcribed and 21 hours 
of untranscribed speech data for both Prague and Vienna. In 
terms of human effort, developed machine learning algorithms 
have significantly brought down the transcription effort. Never-

theless manual effort for pre-processing the radar data is still 
needed which should be reduced if learning is implemented 
directly in the ops-room from thousands of hours. This result 
together with the easy adaptable basic ABSR system for ap-
proach control will be the key to developing and deploying 
ABSR to different approach areas. Overall, the impact of the 
solutions of the MALORCA project when integrated into the 
current ATM procedures is expected to be high, especially due 
to minimizing the total costs related to the implementation of 
decision and negotiation support systems and related to the 
maintenance and system changes towards new ATM proce-
dures. Next steps are on the one hand improvement of model 
learning (acoustic, language and command prediction model) 
by e.g. using plausibility values for acoustic and command 
prediction output. On the other hand MALORCA has shown 
that machine learning already now eases implementation and 
adaptation of ABSR systems to different deployment areas. 
MALORCA’s learning approach has to leave the laboratory 
environment and needs to be applied in the ops room by both 
learning on daily basis and also by also at hub airports.  
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